| Step |
Hyp |
Ref |
Expression |
| 1 |
|
picn |
⊢ π ∈ ℂ |
| 2 |
|
halfcl |
⊢ ( π ∈ ℂ → ( π / 2 ) ∈ ℂ ) |
| 3 |
1 2
|
ax-mp |
⊢ ( π / 2 ) ∈ ℂ |
| 4 |
|
asincl |
⊢ ( 𝐴 ∈ ℂ → ( arcsin ‘ 𝐴 ) ∈ ℂ ) |
| 5 |
|
subneg |
⊢ ( ( ( π / 2 ) ∈ ℂ ∧ ( arcsin ‘ 𝐴 ) ∈ ℂ ) → ( ( π / 2 ) − - ( arcsin ‘ 𝐴 ) ) = ( ( π / 2 ) + ( arcsin ‘ 𝐴 ) ) ) |
| 6 |
3 4 5
|
sylancr |
⊢ ( 𝐴 ∈ ℂ → ( ( π / 2 ) − - ( arcsin ‘ 𝐴 ) ) = ( ( π / 2 ) + ( arcsin ‘ 𝐴 ) ) ) |
| 7 |
|
asinneg |
⊢ ( 𝐴 ∈ ℂ → ( arcsin ‘ - 𝐴 ) = - ( arcsin ‘ 𝐴 ) ) |
| 8 |
7
|
oveq2d |
⊢ ( 𝐴 ∈ ℂ → ( ( π / 2 ) − ( arcsin ‘ - 𝐴 ) ) = ( ( π / 2 ) − - ( arcsin ‘ 𝐴 ) ) ) |
| 9 |
1
|
a1i |
⊢ ( 𝐴 ∈ ℂ → π ∈ ℂ ) |
| 10 |
3
|
a1i |
⊢ ( 𝐴 ∈ ℂ → ( π / 2 ) ∈ ℂ ) |
| 11 |
9 10 4
|
subsubd |
⊢ ( 𝐴 ∈ ℂ → ( π − ( ( π / 2 ) − ( arcsin ‘ 𝐴 ) ) ) = ( ( π − ( π / 2 ) ) + ( arcsin ‘ 𝐴 ) ) ) |
| 12 |
|
pidiv2halves |
⊢ ( ( π / 2 ) + ( π / 2 ) ) = π |
| 13 |
1 3 3 12
|
subaddrii |
⊢ ( π − ( π / 2 ) ) = ( π / 2 ) |
| 14 |
13
|
oveq1i |
⊢ ( ( π − ( π / 2 ) ) + ( arcsin ‘ 𝐴 ) ) = ( ( π / 2 ) + ( arcsin ‘ 𝐴 ) ) |
| 15 |
11 14
|
eqtrdi |
⊢ ( 𝐴 ∈ ℂ → ( π − ( ( π / 2 ) − ( arcsin ‘ 𝐴 ) ) ) = ( ( π / 2 ) + ( arcsin ‘ 𝐴 ) ) ) |
| 16 |
6 8 15
|
3eqtr4d |
⊢ ( 𝐴 ∈ ℂ → ( ( π / 2 ) − ( arcsin ‘ - 𝐴 ) ) = ( π − ( ( π / 2 ) − ( arcsin ‘ 𝐴 ) ) ) ) |
| 17 |
|
negcl |
⊢ ( 𝐴 ∈ ℂ → - 𝐴 ∈ ℂ ) |
| 18 |
|
acosval |
⊢ ( - 𝐴 ∈ ℂ → ( arccos ‘ - 𝐴 ) = ( ( π / 2 ) − ( arcsin ‘ - 𝐴 ) ) ) |
| 19 |
17 18
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( arccos ‘ - 𝐴 ) = ( ( π / 2 ) − ( arcsin ‘ - 𝐴 ) ) ) |
| 20 |
|
acosval |
⊢ ( 𝐴 ∈ ℂ → ( arccos ‘ 𝐴 ) = ( ( π / 2 ) − ( arcsin ‘ 𝐴 ) ) ) |
| 21 |
20
|
oveq2d |
⊢ ( 𝐴 ∈ ℂ → ( π − ( arccos ‘ 𝐴 ) ) = ( π − ( ( π / 2 ) − ( arcsin ‘ 𝐴 ) ) ) ) |
| 22 |
16 19 21
|
3eqtr4d |
⊢ ( 𝐴 ∈ ℂ → ( arccos ‘ - 𝐴 ) = ( π − ( arccos ‘ 𝐴 ) ) ) |