Metamath Proof Explorer


Theorem acosneg

Description: The negative symmetry relation of the arccosine. (Contributed by Mario Carneiro, 2-Apr-2015)

Ref Expression
Assertion acosneg AarccosA=πarccosA

Proof

Step Hyp Ref Expression
1 picn π
2 halfcl ππ2
3 1 2 ax-mp π2
4 asincl AarcsinA
5 subneg π2arcsinAπ2arcsinA=π2+arcsinA
6 3 4 5 sylancr Aπ2arcsinA=π2+arcsinA
7 asinneg AarcsinA=arcsinA
8 7 oveq2d Aπ2arcsinA=π2arcsinA
9 1 a1i Aπ
10 3 a1i Aπ2
11 9 10 4 subsubd Aππ2arcsinA=π-π2+arcsinA
12 pidiv2halves π2+π2=π
13 1 3 3 12 subaddrii ππ2=π2
14 13 oveq1i π-π2+arcsinA=π2+arcsinA
15 11 14 eqtrdi Aππ2arcsinA=π2+arcsinA
16 6 8 15 3eqtr4d Aπ2arcsinA=ππ2arcsinA
17 negcl AA
18 acosval AarccosA=π2arcsinA
19 17 18 syl AarccosA=π2arcsinA
20 acosval AarccosA=π2arcsinA
21 20 oveq2d AπarccosA=ππ2arcsinA
22 16 19 21 3eqtr4d AarccosA=πarccosA