Step |
Hyp |
Ref |
Expression |
1 |
|
addinvcom.a |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
2 |
|
addinvcom.b |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
3 |
|
addinvcom.1 |
⊢ ( 𝜑 → ( 𝐴 + 𝐵 ) = 0 ) |
4 |
|
ssidd |
⊢ ( 𝜑 → ℂ ⊆ ℂ ) |
5 |
|
simpl |
⊢ ( ( ( 𝐴 + 𝑥 ) = 0 ∧ ( 𝑥 + 𝐴 ) = 0 ) → ( 𝐴 + 𝑥 ) = 0 ) |
6 |
5
|
rgenw |
⊢ ∀ 𝑥 ∈ ℂ ( ( ( 𝐴 + 𝑥 ) = 0 ∧ ( 𝑥 + 𝐴 ) = 0 ) → ( 𝐴 + 𝑥 ) = 0 ) |
7 |
6
|
a1i |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ℂ ( ( ( 𝐴 + 𝑥 ) = 0 ∧ ( 𝑥 + 𝐴 ) = 0 ) → ( 𝐴 + 𝑥 ) = 0 ) ) |
8 |
|
sn-negex12 |
⊢ ( 𝐴 ∈ ℂ → ∃ 𝑥 ∈ ℂ ( ( 𝐴 + 𝑥 ) = 0 ∧ ( 𝑥 + 𝐴 ) = 0 ) ) |
9 |
1 8
|
syl |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℂ ( ( 𝐴 + 𝑥 ) = 0 ∧ ( 𝑥 + 𝐴 ) = 0 ) ) |
10 |
|
0cn |
⊢ 0 ∈ ℂ |
11 |
|
sn-subeu |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ∈ ℂ ) → ∃! 𝑥 ∈ ℂ ( 𝐴 + 𝑥 ) = 0 ) |
12 |
1 10 11
|
sylancl |
⊢ ( 𝜑 → ∃! 𝑥 ∈ ℂ ( 𝐴 + 𝑥 ) = 0 ) |
13 |
|
riotass2 |
⊢ ( ( ( ℂ ⊆ ℂ ∧ ∀ 𝑥 ∈ ℂ ( ( ( 𝐴 + 𝑥 ) = 0 ∧ ( 𝑥 + 𝐴 ) = 0 ) → ( 𝐴 + 𝑥 ) = 0 ) ) ∧ ( ∃ 𝑥 ∈ ℂ ( ( 𝐴 + 𝑥 ) = 0 ∧ ( 𝑥 + 𝐴 ) = 0 ) ∧ ∃! 𝑥 ∈ ℂ ( 𝐴 + 𝑥 ) = 0 ) ) → ( ℩ 𝑥 ∈ ℂ ( ( 𝐴 + 𝑥 ) = 0 ∧ ( 𝑥 + 𝐴 ) = 0 ) ) = ( ℩ 𝑥 ∈ ℂ ( 𝐴 + 𝑥 ) = 0 ) ) |
14 |
4 7 9 12 13
|
syl22anc |
⊢ ( 𝜑 → ( ℩ 𝑥 ∈ ℂ ( ( 𝐴 + 𝑥 ) = 0 ∧ ( 𝑥 + 𝐴 ) = 0 ) ) = ( ℩ 𝑥 ∈ ℂ ( 𝐴 + 𝑥 ) = 0 ) ) |
15 |
|
oveq2 |
⊢ ( 𝑥 = 𝐵 → ( 𝐴 + 𝑥 ) = ( 𝐴 + 𝐵 ) ) |
16 |
15
|
eqeq1d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝐴 + 𝑥 ) = 0 ↔ ( 𝐴 + 𝐵 ) = 0 ) ) |
17 |
16
|
riota2 |
⊢ ( ( 𝐵 ∈ ℂ ∧ ∃! 𝑥 ∈ ℂ ( 𝐴 + 𝑥 ) = 0 ) → ( ( 𝐴 + 𝐵 ) = 0 ↔ ( ℩ 𝑥 ∈ ℂ ( 𝐴 + 𝑥 ) = 0 ) = 𝐵 ) ) |
18 |
2 12 17
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) = 0 ↔ ( ℩ 𝑥 ∈ ℂ ( 𝐴 + 𝑥 ) = 0 ) = 𝐵 ) ) |
19 |
3 18
|
mpbid |
⊢ ( 𝜑 → ( ℩ 𝑥 ∈ ℂ ( 𝐴 + 𝑥 ) = 0 ) = 𝐵 ) |
20 |
14 19
|
eqtrd |
⊢ ( 𝜑 → ( ℩ 𝑥 ∈ ℂ ( ( 𝐴 + 𝑥 ) = 0 ∧ ( 𝑥 + 𝐴 ) = 0 ) ) = 𝐵 ) |
21 |
|
reurmo |
⊢ ( ∃! 𝑥 ∈ ℂ ( 𝐴 + 𝑥 ) = 0 → ∃* 𝑥 ∈ ℂ ( 𝐴 + 𝑥 ) = 0 ) |
22 |
5
|
rmoimi |
⊢ ( ∃* 𝑥 ∈ ℂ ( 𝐴 + 𝑥 ) = 0 → ∃* 𝑥 ∈ ℂ ( ( 𝐴 + 𝑥 ) = 0 ∧ ( 𝑥 + 𝐴 ) = 0 ) ) |
23 |
12 21 22
|
3syl |
⊢ ( 𝜑 → ∃* 𝑥 ∈ ℂ ( ( 𝐴 + 𝑥 ) = 0 ∧ ( 𝑥 + 𝐴 ) = 0 ) ) |
24 |
|
reu5 |
⊢ ( ∃! 𝑥 ∈ ℂ ( ( 𝐴 + 𝑥 ) = 0 ∧ ( 𝑥 + 𝐴 ) = 0 ) ↔ ( ∃ 𝑥 ∈ ℂ ( ( 𝐴 + 𝑥 ) = 0 ∧ ( 𝑥 + 𝐴 ) = 0 ) ∧ ∃* 𝑥 ∈ ℂ ( ( 𝐴 + 𝑥 ) = 0 ∧ ( 𝑥 + 𝐴 ) = 0 ) ) ) |
25 |
9 23 24
|
sylanbrc |
⊢ ( 𝜑 → ∃! 𝑥 ∈ ℂ ( ( 𝐴 + 𝑥 ) = 0 ∧ ( 𝑥 + 𝐴 ) = 0 ) ) |
26 |
|
oveq1 |
⊢ ( 𝑥 = 𝐵 → ( 𝑥 + 𝐴 ) = ( 𝐵 + 𝐴 ) ) |
27 |
26
|
eqeq1d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝑥 + 𝐴 ) = 0 ↔ ( 𝐵 + 𝐴 ) = 0 ) ) |
28 |
16 27
|
anbi12d |
⊢ ( 𝑥 = 𝐵 → ( ( ( 𝐴 + 𝑥 ) = 0 ∧ ( 𝑥 + 𝐴 ) = 0 ) ↔ ( ( 𝐴 + 𝐵 ) = 0 ∧ ( 𝐵 + 𝐴 ) = 0 ) ) ) |
29 |
28
|
riota2 |
⊢ ( ( 𝐵 ∈ ℂ ∧ ∃! 𝑥 ∈ ℂ ( ( 𝐴 + 𝑥 ) = 0 ∧ ( 𝑥 + 𝐴 ) = 0 ) ) → ( ( ( 𝐴 + 𝐵 ) = 0 ∧ ( 𝐵 + 𝐴 ) = 0 ) ↔ ( ℩ 𝑥 ∈ ℂ ( ( 𝐴 + 𝑥 ) = 0 ∧ ( 𝑥 + 𝐴 ) = 0 ) ) = 𝐵 ) ) |
30 |
2 25 29
|
syl2anc |
⊢ ( 𝜑 → ( ( ( 𝐴 + 𝐵 ) = 0 ∧ ( 𝐵 + 𝐴 ) = 0 ) ↔ ( ℩ 𝑥 ∈ ℂ ( ( 𝐴 + 𝑥 ) = 0 ∧ ( 𝑥 + 𝐴 ) = 0 ) ) = 𝐵 ) ) |
31 |
20 30
|
mpbird |
⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) = 0 ∧ ( 𝐵 + 𝐴 ) = 0 ) ) |
32 |
31
|
simprd |
⊢ ( 𝜑 → ( 𝐵 + 𝐴 ) = 0 ) |