Step |
Hyp |
Ref |
Expression |
1 |
|
addinvcom.a |
|- ( ph -> A e. CC ) |
2 |
|
addinvcom.b |
|- ( ph -> B e. CC ) |
3 |
|
addinvcom.1 |
|- ( ph -> ( A + B ) = 0 ) |
4 |
|
ssidd |
|- ( ph -> CC C_ CC ) |
5 |
|
simpl |
|- ( ( ( A + x ) = 0 /\ ( x + A ) = 0 ) -> ( A + x ) = 0 ) |
6 |
5
|
rgenw |
|- A. x e. CC ( ( ( A + x ) = 0 /\ ( x + A ) = 0 ) -> ( A + x ) = 0 ) |
7 |
6
|
a1i |
|- ( ph -> A. x e. CC ( ( ( A + x ) = 0 /\ ( x + A ) = 0 ) -> ( A + x ) = 0 ) ) |
8 |
|
sn-negex12 |
|- ( A e. CC -> E. x e. CC ( ( A + x ) = 0 /\ ( x + A ) = 0 ) ) |
9 |
1 8
|
syl |
|- ( ph -> E. x e. CC ( ( A + x ) = 0 /\ ( x + A ) = 0 ) ) |
10 |
|
0cn |
|- 0 e. CC |
11 |
|
sn-subeu |
|- ( ( A e. CC /\ 0 e. CC ) -> E! x e. CC ( A + x ) = 0 ) |
12 |
1 10 11
|
sylancl |
|- ( ph -> E! x e. CC ( A + x ) = 0 ) |
13 |
|
riotass2 |
|- ( ( ( CC C_ CC /\ A. x e. CC ( ( ( A + x ) = 0 /\ ( x + A ) = 0 ) -> ( A + x ) = 0 ) ) /\ ( E. x e. CC ( ( A + x ) = 0 /\ ( x + A ) = 0 ) /\ E! x e. CC ( A + x ) = 0 ) ) -> ( iota_ x e. CC ( ( A + x ) = 0 /\ ( x + A ) = 0 ) ) = ( iota_ x e. CC ( A + x ) = 0 ) ) |
14 |
4 7 9 12 13
|
syl22anc |
|- ( ph -> ( iota_ x e. CC ( ( A + x ) = 0 /\ ( x + A ) = 0 ) ) = ( iota_ x e. CC ( A + x ) = 0 ) ) |
15 |
|
oveq2 |
|- ( x = B -> ( A + x ) = ( A + B ) ) |
16 |
15
|
eqeq1d |
|- ( x = B -> ( ( A + x ) = 0 <-> ( A + B ) = 0 ) ) |
17 |
16
|
riota2 |
|- ( ( B e. CC /\ E! x e. CC ( A + x ) = 0 ) -> ( ( A + B ) = 0 <-> ( iota_ x e. CC ( A + x ) = 0 ) = B ) ) |
18 |
2 12 17
|
syl2anc |
|- ( ph -> ( ( A + B ) = 0 <-> ( iota_ x e. CC ( A + x ) = 0 ) = B ) ) |
19 |
3 18
|
mpbid |
|- ( ph -> ( iota_ x e. CC ( A + x ) = 0 ) = B ) |
20 |
14 19
|
eqtrd |
|- ( ph -> ( iota_ x e. CC ( ( A + x ) = 0 /\ ( x + A ) = 0 ) ) = B ) |
21 |
|
reurmo |
|- ( E! x e. CC ( A + x ) = 0 -> E* x e. CC ( A + x ) = 0 ) |
22 |
5
|
rmoimi |
|- ( E* x e. CC ( A + x ) = 0 -> E* x e. CC ( ( A + x ) = 0 /\ ( x + A ) = 0 ) ) |
23 |
12 21 22
|
3syl |
|- ( ph -> E* x e. CC ( ( A + x ) = 0 /\ ( x + A ) = 0 ) ) |
24 |
|
reu5 |
|- ( E! x e. CC ( ( A + x ) = 0 /\ ( x + A ) = 0 ) <-> ( E. x e. CC ( ( A + x ) = 0 /\ ( x + A ) = 0 ) /\ E* x e. CC ( ( A + x ) = 0 /\ ( x + A ) = 0 ) ) ) |
25 |
9 23 24
|
sylanbrc |
|- ( ph -> E! x e. CC ( ( A + x ) = 0 /\ ( x + A ) = 0 ) ) |
26 |
|
oveq1 |
|- ( x = B -> ( x + A ) = ( B + A ) ) |
27 |
26
|
eqeq1d |
|- ( x = B -> ( ( x + A ) = 0 <-> ( B + A ) = 0 ) ) |
28 |
16 27
|
anbi12d |
|- ( x = B -> ( ( ( A + x ) = 0 /\ ( x + A ) = 0 ) <-> ( ( A + B ) = 0 /\ ( B + A ) = 0 ) ) ) |
29 |
28
|
riota2 |
|- ( ( B e. CC /\ E! x e. CC ( ( A + x ) = 0 /\ ( x + A ) = 0 ) ) -> ( ( ( A + B ) = 0 /\ ( B + A ) = 0 ) <-> ( iota_ x e. CC ( ( A + x ) = 0 /\ ( x + A ) = 0 ) ) = B ) ) |
30 |
2 25 29
|
syl2anc |
|- ( ph -> ( ( ( A + B ) = 0 /\ ( B + A ) = 0 ) <-> ( iota_ x e. CC ( ( A + x ) = 0 /\ ( x + A ) = 0 ) ) = B ) ) |
31 |
20 30
|
mpbird |
|- ( ph -> ( ( A + B ) = 0 /\ ( B + A ) = 0 ) ) |
32 |
31
|
simprd |
|- ( ph -> ( B + A ) = 0 ) |