Metamath Proof Explorer


Theorem axregnd

Description: A version of the Axiom of Regularity with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 3-Jan-2002) (Proof shortened by Wolf Lammen, 18-Aug-2019) (New usage is discouraged.)

Ref Expression
Assertion axregnd ( 𝑥𝑦 → ∃ 𝑥 ( 𝑥𝑦 ∧ ∀ 𝑧 ( 𝑧𝑥 → ¬ 𝑧𝑦 ) ) )

Proof

Step Hyp Ref Expression
1 axregndlem2 ( 𝑥𝑦 → ∃ 𝑥 ( 𝑥𝑦 ∧ ∀ 𝑤 ( 𝑤𝑥 → ¬ 𝑤𝑦 ) ) )
2 nfnae 𝑥 ¬ ∀ 𝑧 𝑧 = 𝑥
3 nfnae 𝑥 ¬ ∀ 𝑧 𝑧 = 𝑦
4 2 3 nfan 𝑥 ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 )
5 nfnae 𝑧 ¬ ∀ 𝑧 𝑧 = 𝑥
6 nfnae 𝑧 ¬ ∀ 𝑧 𝑧 = 𝑦
7 5 6 nfan 𝑧 ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 )
8 nfcvf ( ¬ ∀ 𝑧 𝑧 = 𝑥 𝑧 𝑥 )
9 8 nfcrd ( ¬ ∀ 𝑧 𝑧 = 𝑥 → Ⅎ 𝑧 𝑤𝑥 )
10 9 adantr ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ) → Ⅎ 𝑧 𝑤𝑥 )
11 nfcvf ( ¬ ∀ 𝑧 𝑧 = 𝑦 𝑧 𝑦 )
12 11 nfcrd ( ¬ ∀ 𝑧 𝑧 = 𝑦 → Ⅎ 𝑧 𝑤𝑦 )
13 12 nfnd ( ¬ ∀ 𝑧 𝑧 = 𝑦 → Ⅎ 𝑧 ¬ 𝑤𝑦 )
14 13 adantl ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ) → Ⅎ 𝑧 ¬ 𝑤𝑦 )
15 10 14 nfimd ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ) → Ⅎ 𝑧 ( 𝑤𝑥 → ¬ 𝑤𝑦 ) )
16 elequ1 ( 𝑤 = 𝑧 → ( 𝑤𝑥𝑧𝑥 ) )
17 elequ1 ( 𝑤 = 𝑧 → ( 𝑤𝑦𝑧𝑦 ) )
18 17 notbid ( 𝑤 = 𝑧 → ( ¬ 𝑤𝑦 ↔ ¬ 𝑧𝑦 ) )
19 16 18 imbi12d ( 𝑤 = 𝑧 → ( ( 𝑤𝑥 → ¬ 𝑤𝑦 ) ↔ ( 𝑧𝑥 → ¬ 𝑧𝑦 ) ) )
20 19 a1i ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ) → ( 𝑤 = 𝑧 → ( ( 𝑤𝑥 → ¬ 𝑤𝑦 ) ↔ ( 𝑧𝑥 → ¬ 𝑧𝑦 ) ) ) )
21 7 15 20 cbvald ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ) → ( ∀ 𝑤 ( 𝑤𝑥 → ¬ 𝑤𝑦 ) ↔ ∀ 𝑧 ( 𝑧𝑥 → ¬ 𝑧𝑦 ) ) )
22 21 anbi2d ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ) → ( ( 𝑥𝑦 ∧ ∀ 𝑤 ( 𝑤𝑥 → ¬ 𝑤𝑦 ) ) ↔ ( 𝑥𝑦 ∧ ∀ 𝑧 ( 𝑧𝑥 → ¬ 𝑧𝑦 ) ) ) )
23 4 22 exbid ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ) → ( ∃ 𝑥 ( 𝑥𝑦 ∧ ∀ 𝑤 ( 𝑤𝑥 → ¬ 𝑤𝑦 ) ) ↔ ∃ 𝑥 ( 𝑥𝑦 ∧ ∀ 𝑧 ( 𝑧𝑥 → ¬ 𝑧𝑦 ) ) ) )
24 1 23 syl5ib ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ) → ( 𝑥𝑦 → ∃ 𝑥 ( 𝑥𝑦 ∧ ∀ 𝑧 ( 𝑧𝑥 → ¬ 𝑧𝑦 ) ) ) )
25 24 ex ( ¬ ∀ 𝑧 𝑧 = 𝑥 → ( ¬ ∀ 𝑧 𝑧 = 𝑦 → ( 𝑥𝑦 → ∃ 𝑥 ( 𝑥𝑦 ∧ ∀ 𝑧 ( 𝑧𝑥 → ¬ 𝑧𝑦 ) ) ) ) )
26 axregndlem1 ( ∀ 𝑥 𝑥 = 𝑧 → ( 𝑥𝑦 → ∃ 𝑥 ( 𝑥𝑦 ∧ ∀ 𝑧 ( 𝑧𝑥 → ¬ 𝑧𝑦 ) ) ) )
27 26 aecoms ( ∀ 𝑧 𝑧 = 𝑥 → ( 𝑥𝑦 → ∃ 𝑥 ( 𝑥𝑦 ∧ ∀ 𝑧 ( 𝑧𝑥 → ¬ 𝑧𝑦 ) ) ) )
28 19.8a ( 𝑥𝑦 → ∃ 𝑥 𝑥𝑦 )
29 nfae 𝑥𝑧 𝑧 = 𝑦
30 elirrv ¬ 𝑧𝑧
31 elequ2 ( 𝑧 = 𝑦 → ( 𝑧𝑧𝑧𝑦 ) )
32 30 31 mtbii ( 𝑧 = 𝑦 → ¬ 𝑧𝑦 )
33 32 a1d ( 𝑧 = 𝑦 → ( 𝑧𝑥 → ¬ 𝑧𝑦 ) )
34 33 alimi ( ∀ 𝑧 𝑧 = 𝑦 → ∀ 𝑧 ( 𝑧𝑥 → ¬ 𝑧𝑦 ) )
35 34 anim2i ( ( 𝑥𝑦 ∧ ∀ 𝑧 𝑧 = 𝑦 ) → ( 𝑥𝑦 ∧ ∀ 𝑧 ( 𝑧𝑥 → ¬ 𝑧𝑦 ) ) )
36 35 expcom ( ∀ 𝑧 𝑧 = 𝑦 → ( 𝑥𝑦 → ( 𝑥𝑦 ∧ ∀ 𝑧 ( 𝑧𝑥 → ¬ 𝑧𝑦 ) ) ) )
37 29 36 eximd ( ∀ 𝑧 𝑧 = 𝑦 → ( ∃ 𝑥 𝑥𝑦 → ∃ 𝑥 ( 𝑥𝑦 ∧ ∀ 𝑧 ( 𝑧𝑥 → ¬ 𝑧𝑦 ) ) ) )
38 28 37 syl5 ( ∀ 𝑧 𝑧 = 𝑦 → ( 𝑥𝑦 → ∃ 𝑥 ( 𝑥𝑦 ∧ ∀ 𝑧 ( 𝑧𝑥 → ¬ 𝑧𝑦 ) ) ) )
39 25 27 38 pm2.61ii ( 𝑥𝑦 → ∃ 𝑥 ( 𝑥𝑦 ∧ ∀ 𝑧 ( 𝑧𝑥 → ¬ 𝑧𝑦 ) ) )