Metamath Proof Explorer


Theorem ballotlemrv

Description: Value of R evaluated at J . (Contributed by Thierry Arnoux, 17-Apr-2017)

Ref Expression
Hypotheses ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = { 𝑐 ∈ 𝒫 ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ♯ ‘ 𝑐 ) = 𝑀 }
ballotth.p 𝑃 = ( 𝑥 ∈ 𝒫 𝑂 ↦ ( ( ♯ ‘ 𝑥 ) / ( ♯ ‘ 𝑂 ) ) )
ballotth.f 𝐹 = ( 𝑐𝑂 ↦ ( 𝑖 ∈ ℤ ↦ ( ( ♯ ‘ ( ( 1 ... 𝑖 ) ∩ 𝑐 ) ) − ( ♯ ‘ ( ( 1 ... 𝑖 ) ∖ 𝑐 ) ) ) ) )
ballotth.e 𝐸 = { 𝑐𝑂 ∣ ∀ 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) 0 < ( ( 𝐹𝑐 ) ‘ 𝑖 ) }
ballotth.mgtn 𝑁 < 𝑀
ballotth.i 𝐼 = ( 𝑐 ∈ ( 𝑂𝐸 ) ↦ inf ( { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹𝑐 ) ‘ 𝑘 ) = 0 } , ℝ , < ) )
ballotth.s 𝑆 = ( 𝑐 ∈ ( 𝑂𝐸 ) ↦ ( 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ↦ if ( 𝑖 ≤ ( 𝐼𝑐 ) , ( ( ( 𝐼𝑐 ) + 1 ) − 𝑖 ) , 𝑖 ) ) )
ballotth.r 𝑅 = ( 𝑐 ∈ ( 𝑂𝐸 ) ↦ ( ( 𝑆𝑐 ) “ 𝑐 ) )
Assertion ballotlemrv ( ( 𝐶 ∈ ( 𝑂𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) → ( 𝐽 ∈ ( 𝑅𝐶 ) ↔ if ( 𝐽 ≤ ( 𝐼𝐶 ) , ( ( ( 𝐼𝐶 ) + 1 ) − 𝐽 ) , 𝐽 ) ∈ 𝐶 ) )

Proof

Step Hyp Ref Expression
1 ballotth.m 𝑀 ∈ ℕ
2 ballotth.n 𝑁 ∈ ℕ
3 ballotth.o 𝑂 = { 𝑐 ∈ 𝒫 ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ♯ ‘ 𝑐 ) = 𝑀 }
4 ballotth.p 𝑃 = ( 𝑥 ∈ 𝒫 𝑂 ↦ ( ( ♯ ‘ 𝑥 ) / ( ♯ ‘ 𝑂 ) ) )
5 ballotth.f 𝐹 = ( 𝑐𝑂 ↦ ( 𝑖 ∈ ℤ ↦ ( ( ♯ ‘ ( ( 1 ... 𝑖 ) ∩ 𝑐 ) ) − ( ♯ ‘ ( ( 1 ... 𝑖 ) ∖ 𝑐 ) ) ) ) )
6 ballotth.e 𝐸 = { 𝑐𝑂 ∣ ∀ 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) 0 < ( ( 𝐹𝑐 ) ‘ 𝑖 ) }
7 ballotth.mgtn 𝑁 < 𝑀
8 ballotth.i 𝐼 = ( 𝑐 ∈ ( 𝑂𝐸 ) ↦ inf ( { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹𝑐 ) ‘ 𝑘 ) = 0 } , ℝ , < ) )
9 ballotth.s 𝑆 = ( 𝑐 ∈ ( 𝑂𝐸 ) ↦ ( 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ↦ if ( 𝑖 ≤ ( 𝐼𝑐 ) , ( ( ( 𝐼𝑐 ) + 1 ) − 𝑖 ) , 𝑖 ) ) )
10 ballotth.r 𝑅 = ( 𝑐 ∈ ( 𝑂𝐸 ) ↦ ( ( 𝑆𝑐 ) “ 𝑐 ) )
11 simpl ( ( 𝐶 ∈ ( 𝑂𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) → 𝐶 ∈ ( 𝑂𝐸 ) )
12 1 2 3 4 5 6 7 8 9 ballotlemsf1o ( 𝐶 ∈ ( 𝑂𝐸 ) → ( ( 𝑆𝐶 ) : ( 1 ... ( 𝑀 + 𝑁 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ ( 𝑆𝐶 ) = ( 𝑆𝐶 ) ) )
13 12 simpld ( 𝐶 ∈ ( 𝑂𝐸 ) → ( 𝑆𝐶 ) : ( 1 ... ( 𝑀 + 𝑁 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 𝑁 ) ) )
14 f1ofun ( ( 𝑆𝐶 ) : ( 1 ... ( 𝑀 + 𝑁 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 𝑁 ) ) → Fun ( 𝑆𝐶 ) )
15 11 13 14 3syl ( ( 𝐶 ∈ ( 𝑂𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) → Fun ( 𝑆𝐶 ) )
16 simpr ( ( 𝐶 ∈ ( 𝑂𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) → 𝐽 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) )
17 f1odm ( ( 𝑆𝐶 ) : ( 1 ... ( 𝑀 + 𝑁 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 𝑁 ) ) → dom ( 𝑆𝐶 ) = ( 1 ... ( 𝑀 + 𝑁 ) ) )
18 11 13 17 3syl ( ( 𝐶 ∈ ( 𝑂𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) → dom ( 𝑆𝐶 ) = ( 1 ... ( 𝑀 + 𝑁 ) ) )
19 16 18 eleqtrrd ( ( 𝐶 ∈ ( 𝑂𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) → 𝐽 ∈ dom ( 𝑆𝐶 ) )
20 fvimacnv ( ( Fun ( 𝑆𝐶 ) ∧ 𝐽 ∈ dom ( 𝑆𝐶 ) ) → ( ( ( 𝑆𝐶 ) ‘ 𝐽 ) ∈ 𝐶𝐽 ∈ ( ( 𝑆𝐶 ) “ 𝐶 ) ) )
21 15 19 20 syl2anc ( ( 𝐶 ∈ ( 𝑂𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) → ( ( ( 𝑆𝐶 ) ‘ 𝐽 ) ∈ 𝐶𝐽 ∈ ( ( 𝑆𝐶 ) “ 𝐶 ) ) )
22 1 2 3 4 5 6 7 8 9 ballotlemsv ( ( 𝐶 ∈ ( 𝑂𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) → ( ( 𝑆𝐶 ) ‘ 𝐽 ) = if ( 𝐽 ≤ ( 𝐼𝐶 ) , ( ( ( 𝐼𝐶 ) + 1 ) − 𝐽 ) , 𝐽 ) )
23 22 eleq1d ( ( 𝐶 ∈ ( 𝑂𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) → ( ( ( 𝑆𝐶 ) ‘ 𝐽 ) ∈ 𝐶 ↔ if ( 𝐽 ≤ ( 𝐼𝐶 ) , ( ( ( 𝐼𝐶 ) + 1 ) − 𝐽 ) , 𝐽 ) ∈ 𝐶 ) )
24 12 simprd ( 𝐶 ∈ ( 𝑂𝐸 ) → ( 𝑆𝐶 ) = ( 𝑆𝐶 ) )
25 24 imaeq1d ( 𝐶 ∈ ( 𝑂𝐸 ) → ( ( 𝑆𝐶 ) “ 𝐶 ) = ( ( 𝑆𝐶 ) “ 𝐶 ) )
26 1 2 3 4 5 6 7 8 9 10 ballotlemrval ( 𝐶 ∈ ( 𝑂𝐸 ) → ( 𝑅𝐶 ) = ( ( 𝑆𝐶 ) “ 𝐶 ) )
27 25 26 eqtr4d ( 𝐶 ∈ ( 𝑂𝐸 ) → ( ( 𝑆𝐶 ) “ 𝐶 ) = ( 𝑅𝐶 ) )
28 27 eleq2d ( 𝐶 ∈ ( 𝑂𝐸 ) → ( 𝐽 ∈ ( ( 𝑆𝐶 ) “ 𝐶 ) ↔ 𝐽 ∈ ( 𝑅𝐶 ) ) )
29 11 28 syl ( ( 𝐶 ∈ ( 𝑂𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) → ( 𝐽 ∈ ( ( 𝑆𝐶 ) “ 𝐶 ) ↔ 𝐽 ∈ ( 𝑅𝐶 ) ) )
30 21 23 29 3bitr3rd ( ( 𝐶 ∈ ( 𝑂𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) → ( 𝐽 ∈ ( 𝑅𝐶 ) ↔ if ( 𝐽 ≤ ( 𝐼𝐶 ) , ( ( ( 𝐼𝐶 ) + 1 ) − 𝐽 ) , 𝐽 ) ∈ 𝐶 ) )