Metamath Proof Explorer


Theorem ballotlemrv

Description: Value of R evaluated at J . (Contributed by Thierry Arnoux, 17-Apr-2017)

Ref Expression
Hypotheses ballotth.m M
ballotth.n N
ballotth.o O=c𝒫1M+N|c=M
ballotth.p P=x𝒫OxO
ballotth.f F=cOi1ic1ic
ballotth.e E=cO|i1M+N0<Fci
ballotth.mgtn N<M
ballotth.i I=cOEsupk1M+N|Fck=0<
ballotth.s S=cOEi1M+NifiIcIc+1-ii
ballotth.r R=cOEScc
Assertion ballotlemrv COEJ1M+NJRCifJICIC+1-JJC

Proof

Step Hyp Ref Expression
1 ballotth.m M
2 ballotth.n N
3 ballotth.o O=c𝒫1M+N|c=M
4 ballotth.p P=x𝒫OxO
5 ballotth.f F=cOi1ic1ic
6 ballotth.e E=cO|i1M+N0<Fci
7 ballotth.mgtn N<M
8 ballotth.i I=cOEsupk1M+N|Fck=0<
9 ballotth.s S=cOEi1M+NifiIcIc+1-ii
10 ballotth.r R=cOEScc
11 simpl COEJ1M+NCOE
12 1 2 3 4 5 6 7 8 9 ballotlemsf1o COESC:1M+N1-1 onto1M+NSC-1=SC
13 12 simpld COESC:1M+N1-1 onto1M+N
14 f1ofun SC:1M+N1-1 onto1M+NFunSC
15 11 13 14 3syl COEJ1M+NFunSC
16 simpr COEJ1M+NJ1M+N
17 f1odm SC:1M+N1-1 onto1M+NdomSC=1M+N
18 11 13 17 3syl COEJ1M+NdomSC=1M+N
19 16 18 eleqtrrd COEJ1M+NJdomSC
20 fvimacnv FunSCJdomSCSCJCJSC-1C
21 15 19 20 syl2anc COEJ1M+NSCJCJSC-1C
22 1 2 3 4 5 6 7 8 9 ballotlemsv COEJ1M+NSCJ=ifJICIC+1-JJ
23 22 eleq1d COEJ1M+NSCJCifJICIC+1-JJC
24 12 simprd COESC-1=SC
25 24 imaeq1d COESC-1C=SCC
26 1 2 3 4 5 6 7 8 9 10 ballotlemrval COERC=SCC
27 25 26 eqtr4d COESC-1C=RC
28 27 eleq2d COEJSC-1CJRC
29 11 28 syl COEJ1M+NJSC-1CJRC
30 21 23 29 3bitr3rd COEJ1M+NJRCifJICIC+1-JJC