Metamath Proof Explorer


Theorem ballotlemrv1

Description: Value of R before the tie. (Contributed by Thierry Arnoux, 11-Apr-2017)

Ref Expression
Hypotheses ballotth.m M
ballotth.n N
ballotth.o O=c𝒫1M+N|c=M
ballotth.p P=x𝒫OxO
ballotth.f F=cOi1ic1ic
ballotth.e E=cO|i1M+N0<Fci
ballotth.mgtn N<M
ballotth.i I=cOEsupk1M+N|Fck=0<
ballotth.s S=cOEi1M+NifiIcIc+1-ii
ballotth.r R=cOEScc
Assertion ballotlemrv1 COEJ1M+NJICJRCIC+1-JC

Proof

Step Hyp Ref Expression
1 ballotth.m M
2 ballotth.n N
3 ballotth.o O=c𝒫1M+N|c=M
4 ballotth.p P=x𝒫OxO
5 ballotth.f F=cOi1ic1ic
6 ballotth.e E=cO|i1M+N0<Fci
7 ballotth.mgtn N<M
8 ballotth.i I=cOEsupk1M+N|Fck=0<
9 ballotth.s S=cOEi1M+NifiIcIc+1-ii
10 ballotth.r R=cOEScc
11 1 2 3 4 5 6 7 8 9 10 ballotlemrv COEJ1M+NJRCifJICIC+1-JJC
12 11 3adant3 COEJ1M+NJICJRCifJICIC+1-JJC
13 iftrue JICifJICIC+1-JJ=IC+1-J
14 13 eleq1d JICifJICIC+1-JJCIC+1-JC
15 14 3ad2ant3 COEJ1M+NJICifJICIC+1-JJCIC+1-JC
16 12 15 bitrd COEJ1M+NJICJRCIC+1-JC