| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ballotth.m |
|- M e. NN |
| 2 |
|
ballotth.n |
|- N e. NN |
| 3 |
|
ballotth.o |
|- O = { c e. ~P ( 1 ... ( M + N ) ) | ( # ` c ) = M } |
| 4 |
|
ballotth.p |
|- P = ( x e. ~P O |-> ( ( # ` x ) / ( # ` O ) ) ) |
| 5 |
|
ballotth.f |
|- F = ( c e. O |-> ( i e. ZZ |-> ( ( # ` ( ( 1 ... i ) i^i c ) ) - ( # ` ( ( 1 ... i ) \ c ) ) ) ) ) |
| 6 |
|
ballotth.e |
|- E = { c e. O | A. i e. ( 1 ... ( M + N ) ) 0 < ( ( F ` c ) ` i ) } |
| 7 |
|
ballotth.mgtn |
|- N < M |
| 8 |
|
ballotth.i |
|- I = ( c e. ( O \ E ) |-> inf ( { k e. ( 1 ... ( M + N ) ) | ( ( F ` c ) ` k ) = 0 } , RR , < ) ) |
| 9 |
|
ballotth.s |
|- S = ( c e. ( O \ E ) |-> ( i e. ( 1 ... ( M + N ) ) |-> if ( i <_ ( I ` c ) , ( ( ( I ` c ) + 1 ) - i ) , i ) ) ) |
| 10 |
|
ballotth.r |
|- R = ( c e. ( O \ E ) |-> ( ( S ` c ) " c ) ) |
| 11 |
|
simpl |
|- ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( M + N ) ) ) -> C e. ( O \ E ) ) |
| 12 |
1 2 3 4 5 6 7 8 9
|
ballotlemsf1o |
|- ( C e. ( O \ E ) -> ( ( S ` C ) : ( 1 ... ( M + N ) ) -1-1-onto-> ( 1 ... ( M + N ) ) /\ `' ( S ` C ) = ( S ` C ) ) ) |
| 13 |
12
|
simpld |
|- ( C e. ( O \ E ) -> ( S ` C ) : ( 1 ... ( M + N ) ) -1-1-onto-> ( 1 ... ( M + N ) ) ) |
| 14 |
|
f1ofun |
|- ( ( S ` C ) : ( 1 ... ( M + N ) ) -1-1-onto-> ( 1 ... ( M + N ) ) -> Fun ( S ` C ) ) |
| 15 |
11 13 14
|
3syl |
|- ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( M + N ) ) ) -> Fun ( S ` C ) ) |
| 16 |
|
simpr |
|- ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( M + N ) ) ) -> J e. ( 1 ... ( M + N ) ) ) |
| 17 |
|
f1odm |
|- ( ( S ` C ) : ( 1 ... ( M + N ) ) -1-1-onto-> ( 1 ... ( M + N ) ) -> dom ( S ` C ) = ( 1 ... ( M + N ) ) ) |
| 18 |
11 13 17
|
3syl |
|- ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( M + N ) ) ) -> dom ( S ` C ) = ( 1 ... ( M + N ) ) ) |
| 19 |
16 18
|
eleqtrrd |
|- ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( M + N ) ) ) -> J e. dom ( S ` C ) ) |
| 20 |
|
fvimacnv |
|- ( ( Fun ( S ` C ) /\ J e. dom ( S ` C ) ) -> ( ( ( S ` C ) ` J ) e. C <-> J e. ( `' ( S ` C ) " C ) ) ) |
| 21 |
15 19 20
|
syl2anc |
|- ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( M + N ) ) ) -> ( ( ( S ` C ) ` J ) e. C <-> J e. ( `' ( S ` C ) " C ) ) ) |
| 22 |
1 2 3 4 5 6 7 8 9
|
ballotlemsv |
|- ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( M + N ) ) ) -> ( ( S ` C ) ` J ) = if ( J <_ ( I ` C ) , ( ( ( I ` C ) + 1 ) - J ) , J ) ) |
| 23 |
22
|
eleq1d |
|- ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( M + N ) ) ) -> ( ( ( S ` C ) ` J ) e. C <-> if ( J <_ ( I ` C ) , ( ( ( I ` C ) + 1 ) - J ) , J ) e. C ) ) |
| 24 |
12
|
simprd |
|- ( C e. ( O \ E ) -> `' ( S ` C ) = ( S ` C ) ) |
| 25 |
24
|
imaeq1d |
|- ( C e. ( O \ E ) -> ( `' ( S ` C ) " C ) = ( ( S ` C ) " C ) ) |
| 26 |
1 2 3 4 5 6 7 8 9 10
|
ballotlemrval |
|- ( C e. ( O \ E ) -> ( R ` C ) = ( ( S ` C ) " C ) ) |
| 27 |
25 26
|
eqtr4d |
|- ( C e. ( O \ E ) -> ( `' ( S ` C ) " C ) = ( R ` C ) ) |
| 28 |
27
|
eleq2d |
|- ( C e. ( O \ E ) -> ( J e. ( `' ( S ` C ) " C ) <-> J e. ( R ` C ) ) ) |
| 29 |
11 28
|
syl |
|- ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( M + N ) ) ) -> ( J e. ( `' ( S ` C ) " C ) <-> J e. ( R ` C ) ) ) |
| 30 |
21 23 29
|
3bitr3rd |
|- ( ( C e. ( O \ E ) /\ J e. ( 1 ... ( M + N ) ) ) -> ( J e. ( R ` C ) <-> if ( J <_ ( I ` C ) , ( ( ( I ` C ) + 1 ) - J ) , J ) e. C ) ) |