| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2t1e2 |
⊢ ( 2 · 1 ) = 2 |
| 2 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
| 3 |
1 2
|
eqtri |
⊢ ( 2 · 1 ) = ( 1 + 1 ) |
| 4 |
3
|
oveq2i |
⊢ ( ( 2 · 𝑁 ) + ( 2 · 1 ) ) = ( ( 2 · 𝑁 ) + ( 1 + 1 ) ) |
| 5 |
|
nn0cn |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ ) |
| 6 |
|
2cn |
⊢ 2 ∈ ℂ |
| 7 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 8 |
|
adddi |
⊢ ( ( 2 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 2 · ( 𝑁 + 1 ) ) = ( ( 2 · 𝑁 ) + ( 2 · 1 ) ) ) |
| 9 |
6 7 8
|
mp3an13 |
⊢ ( 𝑁 ∈ ℂ → ( 2 · ( 𝑁 + 1 ) ) = ( ( 2 · 𝑁 ) + ( 2 · 1 ) ) ) |
| 10 |
5 9
|
syl |
⊢ ( 𝑁 ∈ ℕ0 → ( 2 · ( 𝑁 + 1 ) ) = ( ( 2 · 𝑁 ) + ( 2 · 1 ) ) ) |
| 11 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 12 |
|
nn0mulcl |
⊢ ( ( 2 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 2 · 𝑁 ) ∈ ℕ0 ) |
| 13 |
11 12
|
mpan |
⊢ ( 𝑁 ∈ ℕ0 → ( 2 · 𝑁 ) ∈ ℕ0 ) |
| 14 |
13
|
nn0cnd |
⊢ ( 𝑁 ∈ ℕ0 → ( 2 · 𝑁 ) ∈ ℂ ) |
| 15 |
|
addass |
⊢ ( ( ( 2 · 𝑁 ) ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( 2 · 𝑁 ) + 1 ) + 1 ) = ( ( 2 · 𝑁 ) + ( 1 + 1 ) ) ) |
| 16 |
7 7 15
|
mp3an23 |
⊢ ( ( 2 · 𝑁 ) ∈ ℂ → ( ( ( 2 · 𝑁 ) + 1 ) + 1 ) = ( ( 2 · 𝑁 ) + ( 1 + 1 ) ) ) |
| 17 |
14 16
|
syl |
⊢ ( 𝑁 ∈ ℕ0 → ( ( ( 2 · 𝑁 ) + 1 ) + 1 ) = ( ( 2 · 𝑁 ) + ( 1 + 1 ) ) ) |
| 18 |
4 10 17
|
3eqtr4a |
⊢ ( 𝑁 ∈ ℕ0 → ( 2 · ( 𝑁 + 1 ) ) = ( ( ( 2 · 𝑁 ) + 1 ) + 1 ) ) |
| 19 |
18
|
oveq1d |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 2 · ( 𝑁 + 1 ) ) C ( 𝑁 + 1 ) ) = ( ( ( ( 2 · 𝑁 ) + 1 ) + 1 ) C ( 𝑁 + 1 ) ) ) |
| 20 |
|
peano2nn0 |
⊢ ( ( 2 · 𝑁 ) ∈ ℕ0 → ( ( 2 · 𝑁 ) + 1 ) ∈ ℕ0 ) |
| 21 |
13 20
|
syl |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 2 · 𝑁 ) + 1 ) ∈ ℕ0 ) |
| 22 |
|
nn0p1nn |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℕ ) |
| 23 |
22
|
nnzd |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℤ ) |
| 24 |
|
bcpasc |
⊢ ( ( ( ( 2 · 𝑁 ) + 1 ) ∈ ℕ0 ∧ ( 𝑁 + 1 ) ∈ ℤ ) → ( ( ( ( 2 · 𝑁 ) + 1 ) C ( 𝑁 + 1 ) ) + ( ( ( 2 · 𝑁 ) + 1 ) C ( ( 𝑁 + 1 ) − 1 ) ) ) = ( ( ( ( 2 · 𝑁 ) + 1 ) + 1 ) C ( 𝑁 + 1 ) ) ) |
| 25 |
21 23 24
|
syl2anc |
⊢ ( 𝑁 ∈ ℕ0 → ( ( ( ( 2 · 𝑁 ) + 1 ) C ( 𝑁 + 1 ) ) + ( ( ( 2 · 𝑁 ) + 1 ) C ( ( 𝑁 + 1 ) − 1 ) ) ) = ( ( ( ( 2 · 𝑁 ) + 1 ) + 1 ) C ( 𝑁 + 1 ) ) ) |
| 26 |
19 25
|
eqtr4d |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 2 · ( 𝑁 + 1 ) ) C ( 𝑁 + 1 ) ) = ( ( ( ( 2 · 𝑁 ) + 1 ) C ( 𝑁 + 1 ) ) + ( ( ( 2 · 𝑁 ) + 1 ) C ( ( 𝑁 + 1 ) − 1 ) ) ) ) |
| 27 |
|
nn0z |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) |
| 28 |
|
bccl |
⊢ ( ( ( 2 · 𝑁 ) ∈ ℕ0 ∧ 𝑁 ∈ ℤ ) → ( ( 2 · 𝑁 ) C 𝑁 ) ∈ ℕ0 ) |
| 29 |
13 27 28
|
syl2anc |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 2 · 𝑁 ) C 𝑁 ) ∈ ℕ0 ) |
| 30 |
29
|
nn0cnd |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 2 · 𝑁 ) C 𝑁 ) ∈ ℂ ) |
| 31 |
|
2cnd |
⊢ ( 𝑁 ∈ ℕ0 → 2 ∈ ℂ ) |
| 32 |
21
|
nn0red |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 2 · 𝑁 ) + 1 ) ∈ ℝ ) |
| 33 |
32 22
|
nndivred |
⊢ ( 𝑁 ∈ ℕ0 → ( ( ( 2 · 𝑁 ) + 1 ) / ( 𝑁 + 1 ) ) ∈ ℝ ) |
| 34 |
33
|
recnd |
⊢ ( 𝑁 ∈ ℕ0 → ( ( ( 2 · 𝑁 ) + 1 ) / ( 𝑁 + 1 ) ) ∈ ℂ ) |
| 35 |
30 31 34
|
mul12d |
⊢ ( 𝑁 ∈ ℕ0 → ( ( ( 2 · 𝑁 ) C 𝑁 ) · ( 2 · ( ( ( 2 · 𝑁 ) + 1 ) / ( 𝑁 + 1 ) ) ) ) = ( 2 · ( ( ( 2 · 𝑁 ) C 𝑁 ) · ( ( ( 2 · 𝑁 ) + 1 ) / ( 𝑁 + 1 ) ) ) ) ) |
| 36 |
|
1cnd |
⊢ ( 𝑁 ∈ ℕ0 → 1 ∈ ℂ ) |
| 37 |
14 36 5
|
addsubd |
⊢ ( 𝑁 ∈ ℕ0 → ( ( ( 2 · 𝑁 ) + 1 ) − 𝑁 ) = ( ( ( 2 · 𝑁 ) − 𝑁 ) + 1 ) ) |
| 38 |
5
|
2timesd |
⊢ ( 𝑁 ∈ ℕ0 → ( 2 · 𝑁 ) = ( 𝑁 + 𝑁 ) ) |
| 39 |
5 5 38
|
mvrladdd |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 2 · 𝑁 ) − 𝑁 ) = 𝑁 ) |
| 40 |
39
|
oveq1d |
⊢ ( 𝑁 ∈ ℕ0 → ( ( ( 2 · 𝑁 ) − 𝑁 ) + 1 ) = ( 𝑁 + 1 ) ) |
| 41 |
37 40
|
eqtr2d |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) = ( ( ( 2 · 𝑁 ) + 1 ) − 𝑁 ) ) |
| 42 |
41
|
oveq2d |
⊢ ( 𝑁 ∈ ℕ0 → ( ( ( 2 · 𝑁 ) + 1 ) / ( 𝑁 + 1 ) ) = ( ( ( 2 · 𝑁 ) + 1 ) / ( ( ( 2 · 𝑁 ) + 1 ) − 𝑁 ) ) ) |
| 43 |
42
|
oveq2d |
⊢ ( 𝑁 ∈ ℕ0 → ( ( ( 2 · 𝑁 ) C 𝑁 ) · ( ( ( 2 · 𝑁 ) + 1 ) / ( 𝑁 + 1 ) ) ) = ( ( ( 2 · 𝑁 ) C 𝑁 ) · ( ( ( 2 · 𝑁 ) + 1 ) / ( ( ( 2 · 𝑁 ) + 1 ) − 𝑁 ) ) ) ) |
| 44 |
|
fzctr |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ( 0 ... ( 2 · 𝑁 ) ) ) |
| 45 |
|
bcp1n |
⊢ ( 𝑁 ∈ ( 0 ... ( 2 · 𝑁 ) ) → ( ( ( 2 · 𝑁 ) + 1 ) C 𝑁 ) = ( ( ( 2 · 𝑁 ) C 𝑁 ) · ( ( ( 2 · 𝑁 ) + 1 ) / ( ( ( 2 · 𝑁 ) + 1 ) − 𝑁 ) ) ) ) |
| 46 |
44 45
|
syl |
⊢ ( 𝑁 ∈ ℕ0 → ( ( ( 2 · 𝑁 ) + 1 ) C 𝑁 ) = ( ( ( 2 · 𝑁 ) C 𝑁 ) · ( ( ( 2 · 𝑁 ) + 1 ) / ( ( ( 2 · 𝑁 ) + 1 ) − 𝑁 ) ) ) ) |
| 47 |
43 46
|
eqtr4d |
⊢ ( 𝑁 ∈ ℕ0 → ( ( ( 2 · 𝑁 ) C 𝑁 ) · ( ( ( 2 · 𝑁 ) + 1 ) / ( 𝑁 + 1 ) ) ) = ( ( ( 2 · 𝑁 ) + 1 ) C 𝑁 ) ) |
| 48 |
47
|
oveq2d |
⊢ ( 𝑁 ∈ ℕ0 → ( 2 · ( ( ( 2 · 𝑁 ) C 𝑁 ) · ( ( ( 2 · 𝑁 ) + 1 ) / ( 𝑁 + 1 ) ) ) ) = ( 2 · ( ( ( 2 · 𝑁 ) + 1 ) C 𝑁 ) ) ) |
| 49 |
35 48
|
eqtrd |
⊢ ( 𝑁 ∈ ℕ0 → ( ( ( 2 · 𝑁 ) C 𝑁 ) · ( 2 · ( ( ( 2 · 𝑁 ) + 1 ) / ( 𝑁 + 1 ) ) ) ) = ( 2 · ( ( ( 2 · 𝑁 ) + 1 ) C 𝑁 ) ) ) |
| 50 |
|
bccmpl |
⊢ ( ( ( ( 2 · 𝑁 ) + 1 ) ∈ ℕ0 ∧ ( 𝑁 + 1 ) ∈ ℤ ) → ( ( ( 2 · 𝑁 ) + 1 ) C ( 𝑁 + 1 ) ) = ( ( ( 2 · 𝑁 ) + 1 ) C ( ( ( 2 · 𝑁 ) + 1 ) − ( 𝑁 + 1 ) ) ) ) |
| 51 |
21 23 50
|
syl2anc |
⊢ ( 𝑁 ∈ ℕ0 → ( ( ( 2 · 𝑁 ) + 1 ) C ( 𝑁 + 1 ) ) = ( ( ( 2 · 𝑁 ) + 1 ) C ( ( ( 2 · 𝑁 ) + 1 ) − ( 𝑁 + 1 ) ) ) ) |
| 52 |
22
|
nncnd |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℂ ) |
| 53 |
38
|
oveq1d |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 2 · 𝑁 ) + 1 ) = ( ( 𝑁 + 𝑁 ) + 1 ) ) |
| 54 |
5 5 36
|
addassd |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑁 + 𝑁 ) + 1 ) = ( 𝑁 + ( 𝑁 + 1 ) ) ) |
| 55 |
53 54
|
eqtrd |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 2 · 𝑁 ) + 1 ) = ( 𝑁 + ( 𝑁 + 1 ) ) ) |
| 56 |
5 52 55
|
mvrraddd |
⊢ ( 𝑁 ∈ ℕ0 → ( ( ( 2 · 𝑁 ) + 1 ) − ( 𝑁 + 1 ) ) = 𝑁 ) |
| 57 |
56
|
oveq2d |
⊢ ( 𝑁 ∈ ℕ0 → ( ( ( 2 · 𝑁 ) + 1 ) C ( ( ( 2 · 𝑁 ) + 1 ) − ( 𝑁 + 1 ) ) ) = ( ( ( 2 · 𝑁 ) + 1 ) C 𝑁 ) ) |
| 58 |
51 57
|
eqtrd |
⊢ ( 𝑁 ∈ ℕ0 → ( ( ( 2 · 𝑁 ) + 1 ) C ( 𝑁 + 1 ) ) = ( ( ( 2 · 𝑁 ) + 1 ) C 𝑁 ) ) |
| 59 |
|
pncan |
⊢ ( ( 𝑁 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) |
| 60 |
5 7 59
|
sylancl |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) |
| 61 |
60
|
oveq2d |
⊢ ( 𝑁 ∈ ℕ0 → ( ( ( 2 · 𝑁 ) + 1 ) C ( ( 𝑁 + 1 ) − 1 ) ) = ( ( ( 2 · 𝑁 ) + 1 ) C 𝑁 ) ) |
| 62 |
58 61
|
oveq12d |
⊢ ( 𝑁 ∈ ℕ0 → ( ( ( ( 2 · 𝑁 ) + 1 ) C ( 𝑁 + 1 ) ) + ( ( ( 2 · 𝑁 ) + 1 ) C ( ( 𝑁 + 1 ) − 1 ) ) ) = ( ( ( ( 2 · 𝑁 ) + 1 ) C 𝑁 ) + ( ( ( 2 · 𝑁 ) + 1 ) C 𝑁 ) ) ) |
| 63 |
|
bccl |
⊢ ( ( ( ( 2 · 𝑁 ) + 1 ) ∈ ℕ0 ∧ 𝑁 ∈ ℤ ) → ( ( ( 2 · 𝑁 ) + 1 ) C 𝑁 ) ∈ ℕ0 ) |
| 64 |
21 27 63
|
syl2anc |
⊢ ( 𝑁 ∈ ℕ0 → ( ( ( 2 · 𝑁 ) + 1 ) C 𝑁 ) ∈ ℕ0 ) |
| 65 |
64
|
nn0cnd |
⊢ ( 𝑁 ∈ ℕ0 → ( ( ( 2 · 𝑁 ) + 1 ) C 𝑁 ) ∈ ℂ ) |
| 66 |
65
|
2timesd |
⊢ ( 𝑁 ∈ ℕ0 → ( 2 · ( ( ( 2 · 𝑁 ) + 1 ) C 𝑁 ) ) = ( ( ( ( 2 · 𝑁 ) + 1 ) C 𝑁 ) + ( ( ( 2 · 𝑁 ) + 1 ) C 𝑁 ) ) ) |
| 67 |
62 66
|
eqtr4d |
⊢ ( 𝑁 ∈ ℕ0 → ( ( ( ( 2 · 𝑁 ) + 1 ) C ( 𝑁 + 1 ) ) + ( ( ( 2 · 𝑁 ) + 1 ) C ( ( 𝑁 + 1 ) − 1 ) ) ) = ( 2 · ( ( ( 2 · 𝑁 ) + 1 ) C 𝑁 ) ) ) |
| 68 |
49 67
|
eqtr4d |
⊢ ( 𝑁 ∈ ℕ0 → ( ( ( 2 · 𝑁 ) C 𝑁 ) · ( 2 · ( ( ( 2 · 𝑁 ) + 1 ) / ( 𝑁 + 1 ) ) ) ) = ( ( ( ( 2 · 𝑁 ) + 1 ) C ( 𝑁 + 1 ) ) + ( ( ( 2 · 𝑁 ) + 1 ) C ( ( 𝑁 + 1 ) − 1 ) ) ) ) |
| 69 |
26 68
|
eqtr4d |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 2 · ( 𝑁 + 1 ) ) C ( 𝑁 + 1 ) ) = ( ( ( 2 · 𝑁 ) C 𝑁 ) · ( 2 · ( ( ( 2 · 𝑁 ) + 1 ) / ( 𝑁 + 1 ) ) ) ) ) |