Step |
Hyp |
Ref |
Expression |
1 |
|
normlem7t.1 |
⊢ 𝐴 ∈ ℋ |
2 |
|
normlem7t.2 |
⊢ 𝐵 ∈ ℋ |
3 |
2 2
|
hicli |
⊢ ( 𝐵 ·ih 𝐵 ) ∈ ℂ |
4 |
3 1
|
hvmulcli |
⊢ ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ∈ ℋ |
5 |
1 2
|
hicli |
⊢ ( 𝐴 ·ih 𝐵 ) ∈ ℂ |
6 |
5 2
|
hvmulcli |
⊢ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ∈ ℋ |
7 |
4 6 4 6
|
normlem9 |
⊢ ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ·ih ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ) = ( ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ) + ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ) − ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) + ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ) ) ) |
8 |
|
oveq1 |
⊢ ( ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) = ( ( 𝐴 ·ih 𝐴 ) · ( 𝐵 ·ih 𝐵 ) ) → ( ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) · ( 𝐵 ·ih 𝐵 ) ) = ( ( ( 𝐴 ·ih 𝐴 ) · ( 𝐵 ·ih 𝐵 ) ) · ( 𝐵 ·ih 𝐵 ) ) ) |
9 |
8
|
eqcomd |
⊢ ( ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) = ( ( 𝐴 ·ih 𝐴 ) · ( 𝐵 ·ih 𝐵 ) ) → ( ( ( 𝐴 ·ih 𝐴 ) · ( 𝐵 ·ih 𝐵 ) ) · ( 𝐵 ·ih 𝐵 ) ) = ( ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) · ( 𝐵 ·ih 𝐵 ) ) ) |
10 |
|
his5 |
⊢ ( ( ( 𝐵 ·ih 𝐵 ) ∈ ℂ ∧ ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ) = ( ( ∗ ‘ ( 𝐵 ·ih 𝐵 ) ) · ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih 𝐴 ) ) ) |
11 |
3 4 1 10
|
mp3an |
⊢ ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ) = ( ( ∗ ‘ ( 𝐵 ·ih 𝐵 ) ) · ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih 𝐴 ) ) |
12 |
|
hiidrcl |
⊢ ( 𝐵 ∈ ℋ → ( 𝐵 ·ih 𝐵 ) ∈ ℝ ) |
13 |
|
cjre |
⊢ ( ( 𝐵 ·ih 𝐵 ) ∈ ℝ → ( ∗ ‘ ( 𝐵 ·ih 𝐵 ) ) = ( 𝐵 ·ih 𝐵 ) ) |
14 |
2 12 13
|
mp2b |
⊢ ( ∗ ‘ ( 𝐵 ·ih 𝐵 ) ) = ( 𝐵 ·ih 𝐵 ) |
15 |
|
ax-his3 |
⊢ ( ( ( 𝐵 ·ih 𝐵 ) ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih 𝐴 ) = ( ( 𝐵 ·ih 𝐵 ) · ( 𝐴 ·ih 𝐴 ) ) ) |
16 |
3 1 1 15
|
mp3an |
⊢ ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih 𝐴 ) = ( ( 𝐵 ·ih 𝐵 ) · ( 𝐴 ·ih 𝐴 ) ) |
17 |
14 16
|
oveq12i |
⊢ ( ( ∗ ‘ ( 𝐵 ·ih 𝐵 ) ) · ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih 𝐴 ) ) = ( ( 𝐵 ·ih 𝐵 ) · ( ( 𝐵 ·ih 𝐵 ) · ( 𝐴 ·ih 𝐴 ) ) ) |
18 |
1 1
|
hicli |
⊢ ( 𝐴 ·ih 𝐴 ) ∈ ℂ |
19 |
3 18
|
mulcli |
⊢ ( ( 𝐵 ·ih 𝐵 ) · ( 𝐴 ·ih 𝐴 ) ) ∈ ℂ |
20 |
3 19
|
mulcomi |
⊢ ( ( 𝐵 ·ih 𝐵 ) · ( ( 𝐵 ·ih 𝐵 ) · ( 𝐴 ·ih 𝐴 ) ) ) = ( ( ( 𝐵 ·ih 𝐵 ) · ( 𝐴 ·ih 𝐴 ) ) · ( 𝐵 ·ih 𝐵 ) ) |
21 |
18 3
|
mulcomi |
⊢ ( ( 𝐴 ·ih 𝐴 ) · ( 𝐵 ·ih 𝐵 ) ) = ( ( 𝐵 ·ih 𝐵 ) · ( 𝐴 ·ih 𝐴 ) ) |
22 |
21
|
oveq1i |
⊢ ( ( ( 𝐴 ·ih 𝐴 ) · ( 𝐵 ·ih 𝐵 ) ) · ( 𝐵 ·ih 𝐵 ) ) = ( ( ( 𝐵 ·ih 𝐵 ) · ( 𝐴 ·ih 𝐴 ) ) · ( 𝐵 ·ih 𝐵 ) ) |
23 |
20 22
|
eqtr4i |
⊢ ( ( 𝐵 ·ih 𝐵 ) · ( ( 𝐵 ·ih 𝐵 ) · ( 𝐴 ·ih 𝐴 ) ) ) = ( ( ( 𝐴 ·ih 𝐴 ) · ( 𝐵 ·ih 𝐵 ) ) · ( 𝐵 ·ih 𝐵 ) ) |
24 |
11 17 23
|
3eqtri |
⊢ ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ) = ( ( ( 𝐴 ·ih 𝐴 ) · ( 𝐵 ·ih 𝐵 ) ) · ( 𝐵 ·ih 𝐵 ) ) |
25 |
|
his5 |
⊢ ( ( ( 𝐴 ·ih 𝐵 ) ∈ ℂ ∧ ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) = ( ( ∗ ‘ ( 𝐴 ·ih 𝐵 ) ) · ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih 𝐵 ) ) ) |
26 |
5 4 2 25
|
mp3an |
⊢ ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) = ( ( ∗ ‘ ( 𝐴 ·ih 𝐵 ) ) · ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih 𝐵 ) ) |
27 |
2 1
|
his1i |
⊢ ( 𝐵 ·ih 𝐴 ) = ( ∗ ‘ ( 𝐴 ·ih 𝐵 ) ) |
28 |
27
|
eqcomi |
⊢ ( ∗ ‘ ( 𝐴 ·ih 𝐵 ) ) = ( 𝐵 ·ih 𝐴 ) |
29 |
|
ax-his3 |
⊢ ( ( ( 𝐵 ·ih 𝐵 ) ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih 𝐵 ) = ( ( 𝐵 ·ih 𝐵 ) · ( 𝐴 ·ih 𝐵 ) ) ) |
30 |
3 1 2 29
|
mp3an |
⊢ ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih 𝐵 ) = ( ( 𝐵 ·ih 𝐵 ) · ( 𝐴 ·ih 𝐵 ) ) |
31 |
28 30
|
oveq12i |
⊢ ( ( ∗ ‘ ( 𝐴 ·ih 𝐵 ) ) · ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih 𝐵 ) ) = ( ( 𝐵 ·ih 𝐴 ) · ( ( 𝐵 ·ih 𝐵 ) · ( 𝐴 ·ih 𝐵 ) ) ) |
32 |
2 1
|
hicli |
⊢ ( 𝐵 ·ih 𝐴 ) ∈ ℂ |
33 |
3 5
|
mulcli |
⊢ ( ( 𝐵 ·ih 𝐵 ) · ( 𝐴 ·ih 𝐵 ) ) ∈ ℂ |
34 |
32 33
|
mulcomi |
⊢ ( ( 𝐵 ·ih 𝐴 ) · ( ( 𝐵 ·ih 𝐵 ) · ( 𝐴 ·ih 𝐵 ) ) ) = ( ( ( 𝐵 ·ih 𝐵 ) · ( 𝐴 ·ih 𝐵 ) ) · ( 𝐵 ·ih 𝐴 ) ) |
35 |
3 5 32
|
mulassi |
⊢ ( ( ( 𝐵 ·ih 𝐵 ) · ( 𝐴 ·ih 𝐵 ) ) · ( 𝐵 ·ih 𝐴 ) ) = ( ( 𝐵 ·ih 𝐵 ) · ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) ) |
36 |
5 32
|
mulcli |
⊢ ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) ∈ ℂ |
37 |
3 36
|
mulcomi |
⊢ ( ( 𝐵 ·ih 𝐵 ) · ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) ) = ( ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) · ( 𝐵 ·ih 𝐵 ) ) |
38 |
34 35 37
|
3eqtri |
⊢ ( ( 𝐵 ·ih 𝐴 ) · ( ( 𝐵 ·ih 𝐵 ) · ( 𝐴 ·ih 𝐵 ) ) ) = ( ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) · ( 𝐵 ·ih 𝐵 ) ) |
39 |
26 31 38
|
3eqtri |
⊢ ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) = ( ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) · ( 𝐵 ·ih 𝐵 ) ) |
40 |
9 24 39
|
3eqtr4g |
⊢ ( ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) = ( ( 𝐴 ·ih 𝐴 ) · ( 𝐵 ·ih 𝐵 ) ) → ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ) = ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ) |
41 |
|
ax-his3 |
⊢ ( ( ( 𝐴 ·ih 𝐵 ) ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih 𝐴 ) = ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) ) |
42 |
5 2 1 41
|
mp3an |
⊢ ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih 𝐴 ) = ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) |
43 |
14 42
|
oveq12i |
⊢ ( ( ∗ ‘ ( 𝐵 ·ih 𝐵 ) ) · ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih 𝐴 ) ) = ( ( 𝐵 ·ih 𝐵 ) · ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) ) |
44 |
|
his5 |
⊢ ( ( ( 𝐵 ·ih 𝐵 ) ∈ ℂ ∧ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ) = ( ( ∗ ‘ ( 𝐵 ·ih 𝐵 ) ) · ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih 𝐴 ) ) ) |
45 |
3 6 1 44
|
mp3an |
⊢ ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ) = ( ( ∗ ‘ ( 𝐵 ·ih 𝐵 ) ) · ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih 𝐴 ) ) |
46 |
|
his5 |
⊢ ( ( ( 𝐴 ·ih 𝐵 ) ∈ ℂ ∧ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) = ( ( ∗ ‘ ( 𝐴 ·ih 𝐵 ) ) · ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih 𝐵 ) ) ) |
47 |
5 6 2 46
|
mp3an |
⊢ ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) = ( ( ∗ ‘ ( 𝐴 ·ih 𝐵 ) ) · ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih 𝐵 ) ) |
48 |
|
ax-his3 |
⊢ ( ( ( 𝐴 ·ih 𝐵 ) ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih 𝐵 ) = ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐵 ) ) ) |
49 |
5 2 2 48
|
mp3an |
⊢ ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih 𝐵 ) = ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐵 ) ) |
50 |
28 49
|
oveq12i |
⊢ ( ( ∗ ‘ ( 𝐴 ·ih 𝐵 ) ) · ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih 𝐵 ) ) = ( ( 𝐵 ·ih 𝐴 ) · ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐵 ) ) ) |
51 |
5 3
|
mulcli |
⊢ ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐵 ) ) ∈ ℂ |
52 |
32 51
|
mulcomi |
⊢ ( ( 𝐵 ·ih 𝐴 ) · ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐵 ) ) ) = ( ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐵 ) ) · ( 𝐵 ·ih 𝐴 ) ) |
53 |
5 3 32
|
mul32i |
⊢ ( ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐵 ) ) · ( 𝐵 ·ih 𝐴 ) ) = ( ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) · ( 𝐵 ·ih 𝐵 ) ) |
54 |
36 3
|
mulcomi |
⊢ ( ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) · ( 𝐵 ·ih 𝐵 ) ) = ( ( 𝐵 ·ih 𝐵 ) · ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) ) |
55 |
52 53 54
|
3eqtri |
⊢ ( ( 𝐵 ·ih 𝐴 ) · ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐵 ) ) ) = ( ( 𝐵 ·ih 𝐵 ) · ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) ) |
56 |
47 50 55
|
3eqtri |
⊢ ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) = ( ( 𝐵 ·ih 𝐵 ) · ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) ) |
57 |
43 45 56
|
3eqtr4ri |
⊢ ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) = ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ) |
58 |
57
|
a1i |
⊢ ( ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) = ( ( 𝐴 ·ih 𝐴 ) · ( 𝐵 ·ih 𝐵 ) ) → ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) = ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ) ) |
59 |
40 58
|
oveq12d |
⊢ ( ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) = ( ( 𝐴 ·ih 𝐴 ) · ( 𝐵 ·ih 𝐵 ) ) → ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ) + ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ) = ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) + ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ) ) ) |
60 |
59
|
oveq1d |
⊢ ( ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) = ( ( 𝐴 ·ih 𝐴 ) · ( 𝐵 ·ih 𝐵 ) ) → ( ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ) + ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ) − ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) + ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ) ) ) = ( ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) + ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ) ) − ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) + ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ) ) ) ) |
61 |
4 6
|
hicli |
⊢ ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ∈ ℂ |
62 |
6 4
|
hicli |
⊢ ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ) ∈ ℂ |
63 |
61 62
|
addcli |
⊢ ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) + ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ) ) ∈ ℂ |
64 |
63
|
subidi |
⊢ ( ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) + ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ) ) − ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) + ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ) ) ) = 0 |
65 |
60 64
|
eqtrdi |
⊢ ( ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) = ( ( 𝐴 ·ih 𝐴 ) · ( 𝐵 ·ih 𝐵 ) ) → ( ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ) + ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ) − ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) + ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ) ) ) = 0 ) |
66 |
7 65
|
eqtrid |
⊢ ( ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) = ( ( 𝐴 ·ih 𝐴 ) · ( 𝐵 ·ih 𝐵 ) ) → ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ·ih ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ) = 0 ) |
67 |
4 6
|
hvsubcli |
⊢ ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ∈ ℋ |
68 |
|
his6 |
⊢ ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ∈ ℋ → ( ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ·ih ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ) = 0 ↔ ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) = 0ℎ ) ) |
69 |
67 68
|
ax-mp |
⊢ ( ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ·ih ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) ) = 0 ↔ ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) = 0ℎ ) |
70 |
66 69
|
sylib |
⊢ ( ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) = ( ( 𝐴 ·ih 𝐴 ) · ( 𝐵 ·ih 𝐵 ) ) → ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) = 0ℎ ) |
71 |
4 6
|
hvsubeq0i |
⊢ ( ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) −ℎ ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) = 0ℎ ↔ ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) = ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) |
72 |
70 71
|
sylib |
⊢ ( ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) = ( ( 𝐴 ·ih 𝐴 ) · ( 𝐵 ·ih 𝐵 ) ) → ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) = ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) |
73 |
|
oveq1 |
⊢ ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) = ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) → ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih 𝐴 ) = ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih 𝐴 ) ) |
74 |
21 16
|
eqtr4i |
⊢ ( ( 𝐴 ·ih 𝐴 ) · ( 𝐵 ·ih 𝐵 ) ) = ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) ·ih 𝐴 ) |
75 |
42
|
eqcomi |
⊢ ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) = ( ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ·ih 𝐴 ) |
76 |
73 74 75
|
3eqtr4g |
⊢ ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) = ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) → ( ( 𝐴 ·ih 𝐴 ) · ( 𝐵 ·ih 𝐵 ) ) = ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) ) |
77 |
76
|
eqcomd |
⊢ ( ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) = ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) → ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) = ( ( 𝐴 ·ih 𝐴 ) · ( 𝐵 ·ih 𝐵 ) ) ) |
78 |
72 77
|
impbii |
⊢ ( ( ( 𝐴 ·ih 𝐵 ) · ( 𝐵 ·ih 𝐴 ) ) = ( ( 𝐴 ·ih 𝐴 ) · ( 𝐵 ·ih 𝐵 ) ) ↔ ( ( 𝐵 ·ih 𝐵 ) ·ℎ 𝐴 ) = ( ( 𝐴 ·ih 𝐵 ) ·ℎ 𝐵 ) ) |