| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nncn | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℂ ) | 
						
							| 2 |  | 2cnd | ⊢ ( 𝑁  ∈  ℕ  →  2  ∈  ℂ ) | 
						
							| 3 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 4 | 3 | a1i | ⊢ ( 𝑁  ∈  ℕ  →  2  ≠  0 ) | 
						
							| 5 | 1 2 4 | 3jca | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑁  ∈  ℂ  ∧  2  ∈  ℂ  ∧  2  ≠  0 ) ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑁  /  2 )  ∈  ℕ0 )  →  ( 𝑁  ∈  ℂ  ∧  2  ∈  ℂ  ∧  2  ≠  0 ) ) | 
						
							| 7 |  | divcan2 | ⊢ ( ( 𝑁  ∈  ℂ  ∧  2  ∈  ℂ  ∧  2  ≠  0 )  →  ( 2  ·  ( 𝑁  /  2 ) )  =  𝑁 ) | 
						
							| 8 | 7 | eqcomd | ⊢ ( ( 𝑁  ∈  ℂ  ∧  2  ∈  ℂ  ∧  2  ≠  0 )  →  𝑁  =  ( 2  ·  ( 𝑁  /  2 ) ) ) | 
						
							| 9 | 6 8 | syl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑁  /  2 )  ∈  ℕ0 )  →  𝑁  =  ( 2  ·  ( 𝑁  /  2 ) ) ) | 
						
							| 10 | 9 | fveq2d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑁  /  2 )  ∈  ℕ0 )  →  ( #b ‘ 𝑁 )  =  ( #b ‘ ( 2  ·  ( 𝑁  /  2 ) ) ) ) | 
						
							| 11 |  | nn0enne | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 𝑁  /  2 )  ∈  ℕ0  ↔  ( 𝑁  /  2 )  ∈  ℕ ) ) | 
						
							| 12 | 11 | biimpa | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑁  /  2 )  ∈  ℕ0 )  →  ( 𝑁  /  2 )  ∈  ℕ ) | 
						
							| 13 |  | blennnt2 | ⊢ ( ( 𝑁  /  2 )  ∈  ℕ  →  ( #b ‘ ( 2  ·  ( 𝑁  /  2 ) ) )  =  ( ( #b ‘ ( 𝑁  /  2 ) )  +  1 ) ) | 
						
							| 14 | 12 13 | syl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑁  /  2 )  ∈  ℕ0 )  →  ( #b ‘ ( 2  ·  ( 𝑁  /  2 ) ) )  =  ( ( #b ‘ ( 𝑁  /  2 ) )  +  1 ) ) | 
						
							| 15 | 10 14 | eqtr2d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑁  /  2 )  ∈  ℕ0 )  →  ( ( #b ‘ ( 𝑁  /  2 ) )  +  1 )  =  ( #b ‘ 𝑁 ) ) | 
						
							| 16 |  | blennnelnn | ⊢ ( 𝑁  ∈  ℕ  →  ( #b ‘ 𝑁 )  ∈  ℕ ) | 
						
							| 17 | 16 | nncnd | ⊢ ( 𝑁  ∈  ℕ  →  ( #b ‘ 𝑁 )  ∈  ℂ ) | 
						
							| 18 | 17 | adantr | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑁  /  2 )  ∈  ℕ0 )  →  ( #b ‘ 𝑁 )  ∈  ℂ ) | 
						
							| 19 |  | 1cnd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑁  /  2 )  ∈  ℕ0 )  →  1  ∈  ℂ ) | 
						
							| 20 |  | blennn0elnn | ⊢ ( ( 𝑁  /  2 )  ∈  ℕ0  →  ( #b ‘ ( 𝑁  /  2 ) )  ∈  ℕ ) | 
						
							| 21 | 20 | nncnd | ⊢ ( ( 𝑁  /  2 )  ∈  ℕ0  →  ( #b ‘ ( 𝑁  /  2 ) )  ∈  ℂ ) | 
						
							| 22 | 21 | adantl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑁  /  2 )  ∈  ℕ0 )  →  ( #b ‘ ( 𝑁  /  2 ) )  ∈  ℂ ) | 
						
							| 23 | 18 19 22 | subadd2d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑁  /  2 )  ∈  ℕ0 )  →  ( ( ( #b ‘ 𝑁 )  −  1 )  =  ( #b ‘ ( 𝑁  /  2 ) )  ↔  ( ( #b ‘ ( 𝑁  /  2 ) )  +  1 )  =  ( #b ‘ 𝑁 ) ) ) | 
						
							| 24 | 15 23 | mpbird | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑁  /  2 )  ∈  ℕ0 )  →  ( ( #b ‘ 𝑁 )  −  1 )  =  ( #b ‘ ( 𝑁  /  2 ) ) ) | 
						
							| 25 | 24 | eqcomd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑁  /  2 )  ∈  ℕ0 )  →  ( #b ‘ ( 𝑁  /  2 ) )  =  ( ( #b ‘ 𝑁 )  −  1 ) ) |