| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nncn |
|- ( N e. NN -> N e. CC ) |
| 2 |
|
2cnd |
|- ( N e. NN -> 2 e. CC ) |
| 3 |
|
2ne0 |
|- 2 =/= 0 |
| 4 |
3
|
a1i |
|- ( N e. NN -> 2 =/= 0 ) |
| 5 |
1 2 4
|
3jca |
|- ( N e. NN -> ( N e. CC /\ 2 e. CC /\ 2 =/= 0 ) ) |
| 6 |
5
|
adantr |
|- ( ( N e. NN /\ ( N / 2 ) e. NN0 ) -> ( N e. CC /\ 2 e. CC /\ 2 =/= 0 ) ) |
| 7 |
|
divcan2 |
|- ( ( N e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( 2 x. ( N / 2 ) ) = N ) |
| 8 |
7
|
eqcomd |
|- ( ( N e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> N = ( 2 x. ( N / 2 ) ) ) |
| 9 |
6 8
|
syl |
|- ( ( N e. NN /\ ( N / 2 ) e. NN0 ) -> N = ( 2 x. ( N / 2 ) ) ) |
| 10 |
9
|
fveq2d |
|- ( ( N e. NN /\ ( N / 2 ) e. NN0 ) -> ( #b ` N ) = ( #b ` ( 2 x. ( N / 2 ) ) ) ) |
| 11 |
|
nn0enne |
|- ( N e. NN -> ( ( N / 2 ) e. NN0 <-> ( N / 2 ) e. NN ) ) |
| 12 |
11
|
biimpa |
|- ( ( N e. NN /\ ( N / 2 ) e. NN0 ) -> ( N / 2 ) e. NN ) |
| 13 |
|
blennnt2 |
|- ( ( N / 2 ) e. NN -> ( #b ` ( 2 x. ( N / 2 ) ) ) = ( ( #b ` ( N / 2 ) ) + 1 ) ) |
| 14 |
12 13
|
syl |
|- ( ( N e. NN /\ ( N / 2 ) e. NN0 ) -> ( #b ` ( 2 x. ( N / 2 ) ) ) = ( ( #b ` ( N / 2 ) ) + 1 ) ) |
| 15 |
10 14
|
eqtr2d |
|- ( ( N e. NN /\ ( N / 2 ) e. NN0 ) -> ( ( #b ` ( N / 2 ) ) + 1 ) = ( #b ` N ) ) |
| 16 |
|
blennnelnn |
|- ( N e. NN -> ( #b ` N ) e. NN ) |
| 17 |
16
|
nncnd |
|- ( N e. NN -> ( #b ` N ) e. CC ) |
| 18 |
17
|
adantr |
|- ( ( N e. NN /\ ( N / 2 ) e. NN0 ) -> ( #b ` N ) e. CC ) |
| 19 |
|
1cnd |
|- ( ( N e. NN /\ ( N / 2 ) e. NN0 ) -> 1 e. CC ) |
| 20 |
|
blennn0elnn |
|- ( ( N / 2 ) e. NN0 -> ( #b ` ( N / 2 ) ) e. NN ) |
| 21 |
20
|
nncnd |
|- ( ( N / 2 ) e. NN0 -> ( #b ` ( N / 2 ) ) e. CC ) |
| 22 |
21
|
adantl |
|- ( ( N e. NN /\ ( N / 2 ) e. NN0 ) -> ( #b ` ( N / 2 ) ) e. CC ) |
| 23 |
18 19 22
|
subadd2d |
|- ( ( N e. NN /\ ( N / 2 ) e. NN0 ) -> ( ( ( #b ` N ) - 1 ) = ( #b ` ( N / 2 ) ) <-> ( ( #b ` ( N / 2 ) ) + 1 ) = ( #b ` N ) ) ) |
| 24 |
15 23
|
mpbird |
|- ( ( N e. NN /\ ( N / 2 ) e. NN0 ) -> ( ( #b ` N ) - 1 ) = ( #b ` ( N / 2 ) ) ) |
| 25 |
24
|
eqcomd |
|- ( ( N e. NN /\ ( N / 2 ) e. NN0 ) -> ( #b ` ( N / 2 ) ) = ( ( #b ` N ) - 1 ) ) |