| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nncn |  |-  ( N e. NN -> N e. CC ) | 
						
							| 2 |  | 2cnd |  |-  ( N e. NN -> 2 e. CC ) | 
						
							| 3 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 4 | 3 | a1i |  |-  ( N e. NN -> 2 =/= 0 ) | 
						
							| 5 | 1 2 4 | 3jca |  |-  ( N e. NN -> ( N e. CC /\ 2 e. CC /\ 2 =/= 0 ) ) | 
						
							| 6 | 5 | adantr |  |-  ( ( N e. NN /\ ( N / 2 ) e. NN0 ) -> ( N e. CC /\ 2 e. CC /\ 2 =/= 0 ) ) | 
						
							| 7 |  | divcan2 |  |-  ( ( N e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( 2 x. ( N / 2 ) ) = N ) | 
						
							| 8 | 7 | eqcomd |  |-  ( ( N e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> N = ( 2 x. ( N / 2 ) ) ) | 
						
							| 9 | 6 8 | syl |  |-  ( ( N e. NN /\ ( N / 2 ) e. NN0 ) -> N = ( 2 x. ( N / 2 ) ) ) | 
						
							| 10 | 9 | fveq2d |  |-  ( ( N e. NN /\ ( N / 2 ) e. NN0 ) -> ( #b ` N ) = ( #b ` ( 2 x. ( N / 2 ) ) ) ) | 
						
							| 11 |  | nn0enne |  |-  ( N e. NN -> ( ( N / 2 ) e. NN0 <-> ( N / 2 ) e. NN ) ) | 
						
							| 12 | 11 | biimpa |  |-  ( ( N e. NN /\ ( N / 2 ) e. NN0 ) -> ( N / 2 ) e. NN ) | 
						
							| 13 |  | blennnt2 |  |-  ( ( N / 2 ) e. NN -> ( #b ` ( 2 x. ( N / 2 ) ) ) = ( ( #b ` ( N / 2 ) ) + 1 ) ) | 
						
							| 14 | 12 13 | syl |  |-  ( ( N e. NN /\ ( N / 2 ) e. NN0 ) -> ( #b ` ( 2 x. ( N / 2 ) ) ) = ( ( #b ` ( N / 2 ) ) + 1 ) ) | 
						
							| 15 | 10 14 | eqtr2d |  |-  ( ( N e. NN /\ ( N / 2 ) e. NN0 ) -> ( ( #b ` ( N / 2 ) ) + 1 ) = ( #b ` N ) ) | 
						
							| 16 |  | blennnelnn |  |-  ( N e. NN -> ( #b ` N ) e. NN ) | 
						
							| 17 | 16 | nncnd |  |-  ( N e. NN -> ( #b ` N ) e. CC ) | 
						
							| 18 | 17 | adantr |  |-  ( ( N e. NN /\ ( N / 2 ) e. NN0 ) -> ( #b ` N ) e. CC ) | 
						
							| 19 |  | 1cnd |  |-  ( ( N e. NN /\ ( N / 2 ) e. NN0 ) -> 1 e. CC ) | 
						
							| 20 |  | blennn0elnn |  |-  ( ( N / 2 ) e. NN0 -> ( #b ` ( N / 2 ) ) e. NN ) | 
						
							| 21 | 20 | nncnd |  |-  ( ( N / 2 ) e. NN0 -> ( #b ` ( N / 2 ) ) e. CC ) | 
						
							| 22 | 21 | adantl |  |-  ( ( N e. NN /\ ( N / 2 ) e. NN0 ) -> ( #b ` ( N / 2 ) ) e. CC ) | 
						
							| 23 | 18 19 22 | subadd2d |  |-  ( ( N e. NN /\ ( N / 2 ) e. NN0 ) -> ( ( ( #b ` N ) - 1 ) = ( #b ` ( N / 2 ) ) <-> ( ( #b ` ( N / 2 ) ) + 1 ) = ( #b ` N ) ) ) | 
						
							| 24 | 15 23 | mpbird |  |-  ( ( N e. NN /\ ( N / 2 ) e. NN0 ) -> ( ( #b ` N ) - 1 ) = ( #b ` ( N / 2 ) ) ) | 
						
							| 25 | 24 | eqcomd |  |-  ( ( N e. NN /\ ( N / 2 ) e. NN0 ) -> ( #b ` ( N / 2 ) ) = ( ( #b ` N ) - 1 ) ) |