Step |
Hyp |
Ref |
Expression |
1 |
|
2rp |
|- 2 e. RR+ |
2 |
|
1ne2 |
|- 1 =/= 2 |
3 |
2
|
necomi |
|- 2 =/= 1 |
4 |
|
eldifsn |
|- ( 2 e. ( RR+ \ { 1 } ) <-> ( 2 e. RR+ /\ 2 =/= 1 ) ) |
5 |
1 3 4
|
mpbir2an |
|- 2 e. ( RR+ \ { 1 } ) |
6 |
|
uz2m1nn |
|- ( N e. ( ZZ>= ` 2 ) -> ( N - 1 ) e. NN ) |
7 |
6
|
nnrpd |
|- ( N e. ( ZZ>= ` 2 ) -> ( N - 1 ) e. RR+ ) |
8 |
7
|
adantr |
|- ( ( N e. ( ZZ>= ` 2 ) /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( N - 1 ) e. RR+ ) |
9 |
|
relogbdivb |
|- ( ( 2 e. ( RR+ \ { 1 } ) /\ ( N - 1 ) e. RR+ ) -> ( 2 logb ( ( N - 1 ) / 2 ) ) = ( ( 2 logb ( N - 1 ) ) - 1 ) ) |
10 |
5 8 9
|
sylancr |
|- ( ( N e. ( ZZ>= ` 2 ) /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( 2 logb ( ( N - 1 ) / 2 ) ) = ( ( 2 logb ( N - 1 ) ) - 1 ) ) |
11 |
10
|
fveq2d |
|- ( ( N e. ( ZZ>= ` 2 ) /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( |_ ` ( 2 logb ( ( N - 1 ) / 2 ) ) ) = ( |_ ` ( ( 2 logb ( N - 1 ) ) - 1 ) ) ) |
12 |
11
|
oveq1d |
|- ( ( N e. ( ZZ>= ` 2 ) /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( ( |_ ` ( 2 logb ( ( N - 1 ) / 2 ) ) ) + 1 ) = ( ( |_ ` ( ( 2 logb ( N - 1 ) ) - 1 ) ) + 1 ) ) |
13 |
1
|
a1i |
|- ( N e. ( ZZ>= ` 2 ) -> 2 e. RR+ ) |
14 |
3
|
a1i |
|- ( N e. ( ZZ>= ` 2 ) -> 2 =/= 1 ) |
15 |
|
relogbcl |
|- ( ( 2 e. RR+ /\ ( N - 1 ) e. RR+ /\ 2 =/= 1 ) -> ( 2 logb ( N - 1 ) ) e. RR ) |
16 |
13 7 14 15
|
syl3anc |
|- ( N e. ( ZZ>= ` 2 ) -> ( 2 logb ( N - 1 ) ) e. RR ) |
17 |
|
1z |
|- 1 e. ZZ |
18 |
16 17
|
jctir |
|- ( N e. ( ZZ>= ` 2 ) -> ( ( 2 logb ( N - 1 ) ) e. RR /\ 1 e. ZZ ) ) |
19 |
18
|
adantr |
|- ( ( N e. ( ZZ>= ` 2 ) /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( ( 2 logb ( N - 1 ) ) e. RR /\ 1 e. ZZ ) ) |
20 |
|
flsubz |
|- ( ( ( 2 logb ( N - 1 ) ) e. RR /\ 1 e. ZZ ) -> ( |_ ` ( ( 2 logb ( N - 1 ) ) - 1 ) ) = ( ( |_ ` ( 2 logb ( N - 1 ) ) ) - 1 ) ) |
21 |
19 20
|
syl |
|- ( ( N e. ( ZZ>= ` 2 ) /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( |_ ` ( ( 2 logb ( N - 1 ) ) - 1 ) ) = ( ( |_ ` ( 2 logb ( N - 1 ) ) ) - 1 ) ) |
22 |
21
|
oveq1d |
|- ( ( N e. ( ZZ>= ` 2 ) /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( ( |_ ` ( ( 2 logb ( N - 1 ) ) - 1 ) ) + 1 ) = ( ( ( |_ ` ( 2 logb ( N - 1 ) ) ) - 1 ) + 1 ) ) |
23 |
16
|
flcld |
|- ( N e. ( ZZ>= ` 2 ) -> ( |_ ` ( 2 logb ( N - 1 ) ) ) e. ZZ ) |
24 |
23
|
zcnd |
|- ( N e. ( ZZ>= ` 2 ) -> ( |_ ` ( 2 logb ( N - 1 ) ) ) e. CC ) |
25 |
|
npcan1 |
|- ( ( |_ ` ( 2 logb ( N - 1 ) ) ) e. CC -> ( ( ( |_ ` ( 2 logb ( N - 1 ) ) ) - 1 ) + 1 ) = ( |_ ` ( 2 logb ( N - 1 ) ) ) ) |
26 |
24 25
|
syl |
|- ( N e. ( ZZ>= ` 2 ) -> ( ( ( |_ ` ( 2 logb ( N - 1 ) ) ) - 1 ) + 1 ) = ( |_ ` ( 2 logb ( N - 1 ) ) ) ) |
27 |
26
|
adantr |
|- ( ( N e. ( ZZ>= ` 2 ) /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( ( ( |_ ` ( 2 logb ( N - 1 ) ) ) - 1 ) + 1 ) = ( |_ ` ( 2 logb ( N - 1 ) ) ) ) |
28 |
|
eluz2nn |
|- ( N e. ( ZZ>= ` 2 ) -> N e. NN ) |
29 |
28
|
peano2nnd |
|- ( N e. ( ZZ>= ` 2 ) -> ( N + 1 ) e. NN ) |
30 |
29
|
nnred |
|- ( N e. ( ZZ>= ` 2 ) -> ( N + 1 ) e. RR ) |
31 |
|
2re |
|- 2 e. RR |
32 |
31
|
a1i |
|- ( N e. ( ZZ>= ` 2 ) -> 2 e. RR ) |
33 |
|
eluzge2nn0 |
|- ( N e. ( ZZ>= ` 2 ) -> N e. NN0 ) |
34 |
|
nn0p1gt0 |
|- ( N e. NN0 -> 0 < ( N + 1 ) ) |
35 |
33 34
|
syl |
|- ( N e. ( ZZ>= ` 2 ) -> 0 < ( N + 1 ) ) |
36 |
|
2pos |
|- 0 < 2 |
37 |
36
|
a1i |
|- ( N e. ( ZZ>= ` 2 ) -> 0 < 2 ) |
38 |
30 32 35 37
|
divgt0d |
|- ( N e. ( ZZ>= ` 2 ) -> 0 < ( ( N + 1 ) / 2 ) ) |
39 |
|
nn0z |
|- ( ( ( N + 1 ) / 2 ) e. NN0 -> ( ( N + 1 ) / 2 ) e. ZZ ) |
40 |
38 39
|
anim12ci |
|- ( ( N e. ( ZZ>= ` 2 ) /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( ( ( N + 1 ) / 2 ) e. ZZ /\ 0 < ( ( N + 1 ) / 2 ) ) ) |
41 |
|
elnnz |
|- ( ( ( N + 1 ) / 2 ) e. NN <-> ( ( ( N + 1 ) / 2 ) e. ZZ /\ 0 < ( ( N + 1 ) / 2 ) ) ) |
42 |
40 41
|
sylibr |
|- ( ( N e. ( ZZ>= ` 2 ) /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( ( N + 1 ) / 2 ) e. NN ) |
43 |
|
nnolog2flm1 |
|- ( ( N e. ( ZZ>= ` 2 ) /\ ( ( N + 1 ) / 2 ) e. NN ) -> ( |_ ` ( 2 logb N ) ) = ( |_ ` ( 2 logb ( N - 1 ) ) ) ) |
44 |
42 43
|
syldan |
|- ( ( N e. ( ZZ>= ` 2 ) /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( |_ ` ( 2 logb N ) ) = ( |_ ` ( 2 logb ( N - 1 ) ) ) ) |
45 |
27 44
|
eqtr4d |
|- ( ( N e. ( ZZ>= ` 2 ) /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( ( ( |_ ` ( 2 logb ( N - 1 ) ) ) - 1 ) + 1 ) = ( |_ ` ( 2 logb N ) ) ) |
46 |
12 22 45
|
3eqtrd |
|- ( ( N e. ( ZZ>= ` 2 ) /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( ( |_ ` ( 2 logb ( ( N - 1 ) / 2 ) ) ) + 1 ) = ( |_ ` ( 2 logb N ) ) ) |
47 |
46
|
oveq1d |
|- ( ( N e. ( ZZ>= ` 2 ) /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( ( ( |_ ` ( 2 logb ( ( N - 1 ) / 2 ) ) ) + 1 ) + 1 ) = ( ( |_ ` ( 2 logb N ) ) + 1 ) ) |
48 |
|
nno |
|- ( ( N e. ( ZZ>= ` 2 ) /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( ( N - 1 ) / 2 ) e. NN ) |
49 |
|
blennn |
|- ( ( ( N - 1 ) / 2 ) e. NN -> ( #b ` ( ( N - 1 ) / 2 ) ) = ( ( |_ ` ( 2 logb ( ( N - 1 ) / 2 ) ) ) + 1 ) ) |
50 |
49
|
oveq1d |
|- ( ( ( N - 1 ) / 2 ) e. NN -> ( ( #b ` ( ( N - 1 ) / 2 ) ) + 1 ) = ( ( ( |_ ` ( 2 logb ( ( N - 1 ) / 2 ) ) ) + 1 ) + 1 ) ) |
51 |
48 50
|
syl |
|- ( ( N e. ( ZZ>= ` 2 ) /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( ( #b ` ( ( N - 1 ) / 2 ) ) + 1 ) = ( ( ( |_ ` ( 2 logb ( ( N - 1 ) / 2 ) ) ) + 1 ) + 1 ) ) |
52 |
|
blennn |
|- ( N e. NN -> ( #b ` N ) = ( ( |_ ` ( 2 logb N ) ) + 1 ) ) |
53 |
28 52
|
syl |
|- ( N e. ( ZZ>= ` 2 ) -> ( #b ` N ) = ( ( |_ ` ( 2 logb N ) ) + 1 ) ) |
54 |
53
|
adantr |
|- ( ( N e. ( ZZ>= ` 2 ) /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( #b ` N ) = ( ( |_ ` ( 2 logb N ) ) + 1 ) ) |
55 |
47 51 54
|
3eqtr4rd |
|- ( ( N e. ( ZZ>= ` 2 ) /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( #b ` N ) = ( ( #b ` ( ( N - 1 ) / 2 ) ) + 1 ) ) |