| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2rp |  |-  2 e. RR+ | 
						
							| 2 |  | 1ne2 |  |-  1 =/= 2 | 
						
							| 3 | 2 | necomi |  |-  2 =/= 1 | 
						
							| 4 |  | eldifsn |  |-  ( 2 e. ( RR+ \ { 1 } ) <-> ( 2 e. RR+ /\ 2 =/= 1 ) ) | 
						
							| 5 | 1 3 4 | mpbir2an |  |-  2 e. ( RR+ \ { 1 } ) | 
						
							| 6 |  | uz2m1nn |  |-  ( N e. ( ZZ>= ` 2 ) -> ( N - 1 ) e. NN ) | 
						
							| 7 | 6 | nnrpd |  |-  ( N e. ( ZZ>= ` 2 ) -> ( N - 1 ) e. RR+ ) | 
						
							| 8 | 7 | adantr |  |-  ( ( N e. ( ZZ>= ` 2 ) /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( N - 1 ) e. RR+ ) | 
						
							| 9 |  | relogbdivb |  |-  ( ( 2 e. ( RR+ \ { 1 } ) /\ ( N - 1 ) e. RR+ ) -> ( 2 logb ( ( N - 1 ) / 2 ) ) = ( ( 2 logb ( N - 1 ) ) - 1 ) ) | 
						
							| 10 | 5 8 9 | sylancr |  |-  ( ( N e. ( ZZ>= ` 2 ) /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( 2 logb ( ( N - 1 ) / 2 ) ) = ( ( 2 logb ( N - 1 ) ) - 1 ) ) | 
						
							| 11 | 10 | fveq2d |  |-  ( ( N e. ( ZZ>= ` 2 ) /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( |_ ` ( 2 logb ( ( N - 1 ) / 2 ) ) ) = ( |_ ` ( ( 2 logb ( N - 1 ) ) - 1 ) ) ) | 
						
							| 12 | 11 | oveq1d |  |-  ( ( N e. ( ZZ>= ` 2 ) /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( ( |_ ` ( 2 logb ( ( N - 1 ) / 2 ) ) ) + 1 ) = ( ( |_ ` ( ( 2 logb ( N - 1 ) ) - 1 ) ) + 1 ) ) | 
						
							| 13 | 1 | a1i |  |-  ( N e. ( ZZ>= ` 2 ) -> 2 e. RR+ ) | 
						
							| 14 | 3 | a1i |  |-  ( N e. ( ZZ>= ` 2 ) -> 2 =/= 1 ) | 
						
							| 15 |  | relogbcl |  |-  ( ( 2 e. RR+ /\ ( N - 1 ) e. RR+ /\ 2 =/= 1 ) -> ( 2 logb ( N - 1 ) ) e. RR ) | 
						
							| 16 | 13 7 14 15 | syl3anc |  |-  ( N e. ( ZZ>= ` 2 ) -> ( 2 logb ( N - 1 ) ) e. RR ) | 
						
							| 17 |  | 1z |  |-  1 e. ZZ | 
						
							| 18 | 16 17 | jctir |  |-  ( N e. ( ZZ>= ` 2 ) -> ( ( 2 logb ( N - 1 ) ) e. RR /\ 1 e. ZZ ) ) | 
						
							| 19 | 18 | adantr |  |-  ( ( N e. ( ZZ>= ` 2 ) /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( ( 2 logb ( N - 1 ) ) e. RR /\ 1 e. ZZ ) ) | 
						
							| 20 |  | flsubz |  |-  ( ( ( 2 logb ( N - 1 ) ) e. RR /\ 1 e. ZZ ) -> ( |_ ` ( ( 2 logb ( N - 1 ) ) - 1 ) ) = ( ( |_ ` ( 2 logb ( N - 1 ) ) ) - 1 ) ) | 
						
							| 21 | 19 20 | syl |  |-  ( ( N e. ( ZZ>= ` 2 ) /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( |_ ` ( ( 2 logb ( N - 1 ) ) - 1 ) ) = ( ( |_ ` ( 2 logb ( N - 1 ) ) ) - 1 ) ) | 
						
							| 22 | 21 | oveq1d |  |-  ( ( N e. ( ZZ>= ` 2 ) /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( ( |_ ` ( ( 2 logb ( N - 1 ) ) - 1 ) ) + 1 ) = ( ( ( |_ ` ( 2 logb ( N - 1 ) ) ) - 1 ) + 1 ) ) | 
						
							| 23 | 16 | flcld |  |-  ( N e. ( ZZ>= ` 2 ) -> ( |_ ` ( 2 logb ( N - 1 ) ) ) e. ZZ ) | 
						
							| 24 | 23 | zcnd |  |-  ( N e. ( ZZ>= ` 2 ) -> ( |_ ` ( 2 logb ( N - 1 ) ) ) e. CC ) | 
						
							| 25 |  | npcan1 |  |-  ( ( |_ ` ( 2 logb ( N - 1 ) ) ) e. CC -> ( ( ( |_ ` ( 2 logb ( N - 1 ) ) ) - 1 ) + 1 ) = ( |_ ` ( 2 logb ( N - 1 ) ) ) ) | 
						
							| 26 | 24 25 | syl |  |-  ( N e. ( ZZ>= ` 2 ) -> ( ( ( |_ ` ( 2 logb ( N - 1 ) ) ) - 1 ) + 1 ) = ( |_ ` ( 2 logb ( N - 1 ) ) ) ) | 
						
							| 27 | 26 | adantr |  |-  ( ( N e. ( ZZ>= ` 2 ) /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( ( ( |_ ` ( 2 logb ( N - 1 ) ) ) - 1 ) + 1 ) = ( |_ ` ( 2 logb ( N - 1 ) ) ) ) | 
						
							| 28 |  | eluz2nn |  |-  ( N e. ( ZZ>= ` 2 ) -> N e. NN ) | 
						
							| 29 | 28 | peano2nnd |  |-  ( N e. ( ZZ>= ` 2 ) -> ( N + 1 ) e. NN ) | 
						
							| 30 | 29 | nnred |  |-  ( N e. ( ZZ>= ` 2 ) -> ( N + 1 ) e. RR ) | 
						
							| 31 |  | 2re |  |-  2 e. RR | 
						
							| 32 | 31 | a1i |  |-  ( N e. ( ZZ>= ` 2 ) -> 2 e. RR ) | 
						
							| 33 |  | eluzge2nn0 |  |-  ( N e. ( ZZ>= ` 2 ) -> N e. NN0 ) | 
						
							| 34 |  | nn0p1gt0 |  |-  ( N e. NN0 -> 0 < ( N + 1 ) ) | 
						
							| 35 | 33 34 | syl |  |-  ( N e. ( ZZ>= ` 2 ) -> 0 < ( N + 1 ) ) | 
						
							| 36 |  | 2pos |  |-  0 < 2 | 
						
							| 37 | 36 | a1i |  |-  ( N e. ( ZZ>= ` 2 ) -> 0 < 2 ) | 
						
							| 38 | 30 32 35 37 | divgt0d |  |-  ( N e. ( ZZ>= ` 2 ) -> 0 < ( ( N + 1 ) / 2 ) ) | 
						
							| 39 |  | nn0z |  |-  ( ( ( N + 1 ) / 2 ) e. NN0 -> ( ( N + 1 ) / 2 ) e. ZZ ) | 
						
							| 40 | 38 39 | anim12ci |  |-  ( ( N e. ( ZZ>= ` 2 ) /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( ( ( N + 1 ) / 2 ) e. ZZ /\ 0 < ( ( N + 1 ) / 2 ) ) ) | 
						
							| 41 |  | elnnz |  |-  ( ( ( N + 1 ) / 2 ) e. NN <-> ( ( ( N + 1 ) / 2 ) e. ZZ /\ 0 < ( ( N + 1 ) / 2 ) ) ) | 
						
							| 42 | 40 41 | sylibr |  |-  ( ( N e. ( ZZ>= ` 2 ) /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( ( N + 1 ) / 2 ) e. NN ) | 
						
							| 43 |  | nnolog2flm1 |  |-  ( ( N e. ( ZZ>= ` 2 ) /\ ( ( N + 1 ) / 2 ) e. NN ) -> ( |_ ` ( 2 logb N ) ) = ( |_ ` ( 2 logb ( N - 1 ) ) ) ) | 
						
							| 44 | 42 43 | syldan |  |-  ( ( N e. ( ZZ>= ` 2 ) /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( |_ ` ( 2 logb N ) ) = ( |_ ` ( 2 logb ( N - 1 ) ) ) ) | 
						
							| 45 | 27 44 | eqtr4d |  |-  ( ( N e. ( ZZ>= ` 2 ) /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( ( ( |_ ` ( 2 logb ( N - 1 ) ) ) - 1 ) + 1 ) = ( |_ ` ( 2 logb N ) ) ) | 
						
							| 46 | 12 22 45 | 3eqtrd |  |-  ( ( N e. ( ZZ>= ` 2 ) /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( ( |_ ` ( 2 logb ( ( N - 1 ) / 2 ) ) ) + 1 ) = ( |_ ` ( 2 logb N ) ) ) | 
						
							| 47 | 46 | oveq1d |  |-  ( ( N e. ( ZZ>= ` 2 ) /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( ( ( |_ ` ( 2 logb ( ( N - 1 ) / 2 ) ) ) + 1 ) + 1 ) = ( ( |_ ` ( 2 logb N ) ) + 1 ) ) | 
						
							| 48 |  | nno |  |-  ( ( N e. ( ZZ>= ` 2 ) /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( ( N - 1 ) / 2 ) e. NN ) | 
						
							| 49 |  | blennn |  |-  ( ( ( N - 1 ) / 2 ) e. NN -> ( #b ` ( ( N - 1 ) / 2 ) ) = ( ( |_ ` ( 2 logb ( ( N - 1 ) / 2 ) ) ) + 1 ) ) | 
						
							| 50 | 49 | oveq1d |  |-  ( ( ( N - 1 ) / 2 ) e. NN -> ( ( #b ` ( ( N - 1 ) / 2 ) ) + 1 ) = ( ( ( |_ ` ( 2 logb ( ( N - 1 ) / 2 ) ) ) + 1 ) + 1 ) ) | 
						
							| 51 | 48 50 | syl |  |-  ( ( N e. ( ZZ>= ` 2 ) /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( ( #b ` ( ( N - 1 ) / 2 ) ) + 1 ) = ( ( ( |_ ` ( 2 logb ( ( N - 1 ) / 2 ) ) ) + 1 ) + 1 ) ) | 
						
							| 52 |  | blennn |  |-  ( N e. NN -> ( #b ` N ) = ( ( |_ ` ( 2 logb N ) ) + 1 ) ) | 
						
							| 53 | 28 52 | syl |  |-  ( N e. ( ZZ>= ` 2 ) -> ( #b ` N ) = ( ( |_ ` ( 2 logb N ) ) + 1 ) ) | 
						
							| 54 | 53 | adantr |  |-  ( ( N e. ( ZZ>= ` 2 ) /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( #b ` N ) = ( ( |_ ` ( 2 logb N ) ) + 1 ) ) | 
						
							| 55 | 47 51 54 | 3eqtr4rd |  |-  ( ( N e. ( ZZ>= ` 2 ) /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( #b ` N ) = ( ( #b ` ( ( N - 1 ) / 2 ) ) + 1 ) ) |