| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eluz2nn |
|- ( N e. ( ZZ>= ` 2 ) -> N e. NN ) |
| 2 |
|
nneop |
|- ( N e. NN -> ( ( N / 2 ) e. NN \/ ( ( N + 1 ) / 2 ) e. NN ) ) |
| 3 |
1 2
|
syl |
|- ( N e. ( ZZ>= ` 2 ) -> ( ( N / 2 ) e. NN \/ ( ( N + 1 ) / 2 ) e. NN ) ) |
| 4 |
|
nnnn0 |
|- ( ( N / 2 ) e. NN -> ( N / 2 ) e. NN0 ) |
| 5 |
|
blennn0em1 |
|- ( ( N e. NN /\ ( N / 2 ) e. NN0 ) -> ( #b ` ( N / 2 ) ) = ( ( #b ` N ) - 1 ) ) |
| 6 |
4 5
|
sylan2 |
|- ( ( N e. NN /\ ( N / 2 ) e. NN ) -> ( #b ` ( N / 2 ) ) = ( ( #b ` N ) - 1 ) ) |
| 7 |
6
|
ancoms |
|- ( ( ( N / 2 ) e. NN /\ N e. NN ) -> ( #b ` ( N / 2 ) ) = ( ( #b ` N ) - 1 ) ) |
| 8 |
7
|
oveq1d |
|- ( ( ( N / 2 ) e. NN /\ N e. NN ) -> ( ( #b ` ( N / 2 ) ) + 1 ) = ( ( ( #b ` N ) - 1 ) + 1 ) ) |
| 9 |
|
nnz |
|- ( ( N / 2 ) e. NN -> ( N / 2 ) e. ZZ ) |
| 10 |
|
flid |
|- ( ( N / 2 ) e. ZZ -> ( |_ ` ( N / 2 ) ) = ( N / 2 ) ) |
| 11 |
9 10
|
syl |
|- ( ( N / 2 ) e. NN -> ( |_ ` ( N / 2 ) ) = ( N / 2 ) ) |
| 12 |
11
|
eqcomd |
|- ( ( N / 2 ) e. NN -> ( N / 2 ) = ( |_ ` ( N / 2 ) ) ) |
| 13 |
12
|
fveq2d |
|- ( ( N / 2 ) e. NN -> ( #b ` ( N / 2 ) ) = ( #b ` ( |_ ` ( N / 2 ) ) ) ) |
| 14 |
13
|
oveq1d |
|- ( ( N / 2 ) e. NN -> ( ( #b ` ( N / 2 ) ) + 1 ) = ( ( #b ` ( |_ ` ( N / 2 ) ) ) + 1 ) ) |
| 15 |
14
|
adantr |
|- ( ( ( N / 2 ) e. NN /\ N e. NN ) -> ( ( #b ` ( N / 2 ) ) + 1 ) = ( ( #b ` ( |_ ` ( N / 2 ) ) ) + 1 ) ) |
| 16 |
|
blennnelnn |
|- ( N e. NN -> ( #b ` N ) e. NN ) |
| 17 |
16
|
nncnd |
|- ( N e. NN -> ( #b ` N ) e. CC ) |
| 18 |
|
npcan1 |
|- ( ( #b ` N ) e. CC -> ( ( ( #b ` N ) - 1 ) + 1 ) = ( #b ` N ) ) |
| 19 |
17 18
|
syl |
|- ( N e. NN -> ( ( ( #b ` N ) - 1 ) + 1 ) = ( #b ` N ) ) |
| 20 |
19
|
adantl |
|- ( ( ( N / 2 ) e. NN /\ N e. NN ) -> ( ( ( #b ` N ) - 1 ) + 1 ) = ( #b ` N ) ) |
| 21 |
8 15 20
|
3eqtr3rd |
|- ( ( ( N / 2 ) e. NN /\ N e. NN ) -> ( #b ` N ) = ( ( #b ` ( |_ ` ( N / 2 ) ) ) + 1 ) ) |
| 22 |
21
|
expcom |
|- ( N e. NN -> ( ( N / 2 ) e. NN -> ( #b ` N ) = ( ( #b ` ( |_ ` ( N / 2 ) ) ) + 1 ) ) ) |
| 23 |
22 1
|
syl11 |
|- ( ( N / 2 ) e. NN -> ( N e. ( ZZ>= ` 2 ) -> ( #b ` N ) = ( ( #b ` ( |_ ` ( N / 2 ) ) ) + 1 ) ) ) |
| 24 |
|
nnnn0 |
|- ( ( ( N + 1 ) / 2 ) e. NN -> ( ( N + 1 ) / 2 ) e. NN0 ) |
| 25 |
|
blennngt2o2 |
|- ( ( N e. ( ZZ>= ` 2 ) /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( #b ` N ) = ( ( #b ` ( ( N - 1 ) / 2 ) ) + 1 ) ) |
| 26 |
24 25
|
sylan2 |
|- ( ( N e. ( ZZ>= ` 2 ) /\ ( ( N + 1 ) / 2 ) e. NN ) -> ( #b ` N ) = ( ( #b ` ( ( N - 1 ) / 2 ) ) + 1 ) ) |
| 27 |
26
|
ancoms |
|- ( ( ( ( N + 1 ) / 2 ) e. NN /\ N e. ( ZZ>= ` 2 ) ) -> ( #b ` N ) = ( ( #b ` ( ( N - 1 ) / 2 ) ) + 1 ) ) |
| 28 |
|
eluzge2nn0 |
|- ( N e. ( ZZ>= ` 2 ) -> N e. NN0 ) |
| 29 |
|
nn0ofldiv2 |
|- ( ( N e. NN0 /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( |_ ` ( N / 2 ) ) = ( ( N - 1 ) / 2 ) ) |
| 30 |
28 24 29
|
syl2anr |
|- ( ( ( ( N + 1 ) / 2 ) e. NN /\ N e. ( ZZ>= ` 2 ) ) -> ( |_ ` ( N / 2 ) ) = ( ( N - 1 ) / 2 ) ) |
| 31 |
30
|
eqcomd |
|- ( ( ( ( N + 1 ) / 2 ) e. NN /\ N e. ( ZZ>= ` 2 ) ) -> ( ( N - 1 ) / 2 ) = ( |_ ` ( N / 2 ) ) ) |
| 32 |
31
|
fveq2d |
|- ( ( ( ( N + 1 ) / 2 ) e. NN /\ N e. ( ZZ>= ` 2 ) ) -> ( #b ` ( ( N - 1 ) / 2 ) ) = ( #b ` ( |_ ` ( N / 2 ) ) ) ) |
| 33 |
32
|
oveq1d |
|- ( ( ( ( N + 1 ) / 2 ) e. NN /\ N e. ( ZZ>= ` 2 ) ) -> ( ( #b ` ( ( N - 1 ) / 2 ) ) + 1 ) = ( ( #b ` ( |_ ` ( N / 2 ) ) ) + 1 ) ) |
| 34 |
27 33
|
eqtrd |
|- ( ( ( ( N + 1 ) / 2 ) e. NN /\ N e. ( ZZ>= ` 2 ) ) -> ( #b ` N ) = ( ( #b ` ( |_ ` ( N / 2 ) ) ) + 1 ) ) |
| 35 |
34
|
ex |
|- ( ( ( N + 1 ) / 2 ) e. NN -> ( N e. ( ZZ>= ` 2 ) -> ( #b ` N ) = ( ( #b ` ( |_ ` ( N / 2 ) ) ) + 1 ) ) ) |
| 36 |
23 35
|
jaoi |
|- ( ( ( N / 2 ) e. NN \/ ( ( N + 1 ) / 2 ) e. NN ) -> ( N e. ( ZZ>= ` 2 ) -> ( #b ` N ) = ( ( #b ` ( |_ ` ( N / 2 ) ) ) + 1 ) ) ) |
| 37 |
3 36
|
mpcom |
|- ( N e. ( ZZ>= ` 2 ) -> ( #b ` N ) = ( ( #b ` ( |_ ` ( N / 2 ) ) ) + 1 ) ) |