| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eluz2nn |  |-  ( N e. ( ZZ>= ` 2 ) -> N e. NN ) | 
						
							| 2 |  | nneop |  |-  ( N e. NN -> ( ( N / 2 ) e. NN \/ ( ( N + 1 ) / 2 ) e. NN ) ) | 
						
							| 3 | 1 2 | syl |  |-  ( N e. ( ZZ>= ` 2 ) -> ( ( N / 2 ) e. NN \/ ( ( N + 1 ) / 2 ) e. NN ) ) | 
						
							| 4 |  | nnnn0 |  |-  ( ( N / 2 ) e. NN -> ( N / 2 ) e. NN0 ) | 
						
							| 5 |  | blennn0em1 |  |-  ( ( N e. NN /\ ( N / 2 ) e. NN0 ) -> ( #b ` ( N / 2 ) ) = ( ( #b ` N ) - 1 ) ) | 
						
							| 6 | 4 5 | sylan2 |  |-  ( ( N e. NN /\ ( N / 2 ) e. NN ) -> ( #b ` ( N / 2 ) ) = ( ( #b ` N ) - 1 ) ) | 
						
							| 7 | 6 | ancoms |  |-  ( ( ( N / 2 ) e. NN /\ N e. NN ) -> ( #b ` ( N / 2 ) ) = ( ( #b ` N ) - 1 ) ) | 
						
							| 8 | 7 | oveq1d |  |-  ( ( ( N / 2 ) e. NN /\ N e. NN ) -> ( ( #b ` ( N / 2 ) ) + 1 ) = ( ( ( #b ` N ) - 1 ) + 1 ) ) | 
						
							| 9 |  | nnz |  |-  ( ( N / 2 ) e. NN -> ( N / 2 ) e. ZZ ) | 
						
							| 10 |  | flid |  |-  ( ( N / 2 ) e. ZZ -> ( |_ ` ( N / 2 ) ) = ( N / 2 ) ) | 
						
							| 11 | 9 10 | syl |  |-  ( ( N / 2 ) e. NN -> ( |_ ` ( N / 2 ) ) = ( N / 2 ) ) | 
						
							| 12 | 11 | eqcomd |  |-  ( ( N / 2 ) e. NN -> ( N / 2 ) = ( |_ ` ( N / 2 ) ) ) | 
						
							| 13 | 12 | fveq2d |  |-  ( ( N / 2 ) e. NN -> ( #b ` ( N / 2 ) ) = ( #b ` ( |_ ` ( N / 2 ) ) ) ) | 
						
							| 14 | 13 | oveq1d |  |-  ( ( N / 2 ) e. NN -> ( ( #b ` ( N / 2 ) ) + 1 ) = ( ( #b ` ( |_ ` ( N / 2 ) ) ) + 1 ) ) | 
						
							| 15 | 14 | adantr |  |-  ( ( ( N / 2 ) e. NN /\ N e. NN ) -> ( ( #b ` ( N / 2 ) ) + 1 ) = ( ( #b ` ( |_ ` ( N / 2 ) ) ) + 1 ) ) | 
						
							| 16 |  | blennnelnn |  |-  ( N e. NN -> ( #b ` N ) e. NN ) | 
						
							| 17 | 16 | nncnd |  |-  ( N e. NN -> ( #b ` N ) e. CC ) | 
						
							| 18 |  | npcan1 |  |-  ( ( #b ` N ) e. CC -> ( ( ( #b ` N ) - 1 ) + 1 ) = ( #b ` N ) ) | 
						
							| 19 | 17 18 | syl |  |-  ( N e. NN -> ( ( ( #b ` N ) - 1 ) + 1 ) = ( #b ` N ) ) | 
						
							| 20 | 19 | adantl |  |-  ( ( ( N / 2 ) e. NN /\ N e. NN ) -> ( ( ( #b ` N ) - 1 ) + 1 ) = ( #b ` N ) ) | 
						
							| 21 | 8 15 20 | 3eqtr3rd |  |-  ( ( ( N / 2 ) e. NN /\ N e. NN ) -> ( #b ` N ) = ( ( #b ` ( |_ ` ( N / 2 ) ) ) + 1 ) ) | 
						
							| 22 | 21 | expcom |  |-  ( N e. NN -> ( ( N / 2 ) e. NN -> ( #b ` N ) = ( ( #b ` ( |_ ` ( N / 2 ) ) ) + 1 ) ) ) | 
						
							| 23 | 22 1 | syl11 |  |-  ( ( N / 2 ) e. NN -> ( N e. ( ZZ>= ` 2 ) -> ( #b ` N ) = ( ( #b ` ( |_ ` ( N / 2 ) ) ) + 1 ) ) ) | 
						
							| 24 |  | nnnn0 |  |-  ( ( ( N + 1 ) / 2 ) e. NN -> ( ( N + 1 ) / 2 ) e. NN0 ) | 
						
							| 25 |  | blennngt2o2 |  |-  ( ( N e. ( ZZ>= ` 2 ) /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( #b ` N ) = ( ( #b ` ( ( N - 1 ) / 2 ) ) + 1 ) ) | 
						
							| 26 | 24 25 | sylan2 |  |-  ( ( N e. ( ZZ>= ` 2 ) /\ ( ( N + 1 ) / 2 ) e. NN ) -> ( #b ` N ) = ( ( #b ` ( ( N - 1 ) / 2 ) ) + 1 ) ) | 
						
							| 27 | 26 | ancoms |  |-  ( ( ( ( N + 1 ) / 2 ) e. NN /\ N e. ( ZZ>= ` 2 ) ) -> ( #b ` N ) = ( ( #b ` ( ( N - 1 ) / 2 ) ) + 1 ) ) | 
						
							| 28 |  | eluzge2nn0 |  |-  ( N e. ( ZZ>= ` 2 ) -> N e. NN0 ) | 
						
							| 29 |  | nn0ofldiv2 |  |-  ( ( N e. NN0 /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( |_ ` ( N / 2 ) ) = ( ( N - 1 ) / 2 ) ) | 
						
							| 30 | 28 24 29 | syl2anr |  |-  ( ( ( ( N + 1 ) / 2 ) e. NN /\ N e. ( ZZ>= ` 2 ) ) -> ( |_ ` ( N / 2 ) ) = ( ( N - 1 ) / 2 ) ) | 
						
							| 31 | 30 | eqcomd |  |-  ( ( ( ( N + 1 ) / 2 ) e. NN /\ N e. ( ZZ>= ` 2 ) ) -> ( ( N - 1 ) / 2 ) = ( |_ ` ( N / 2 ) ) ) | 
						
							| 32 | 31 | fveq2d |  |-  ( ( ( ( N + 1 ) / 2 ) e. NN /\ N e. ( ZZ>= ` 2 ) ) -> ( #b ` ( ( N - 1 ) / 2 ) ) = ( #b ` ( |_ ` ( N / 2 ) ) ) ) | 
						
							| 33 | 32 | oveq1d |  |-  ( ( ( ( N + 1 ) / 2 ) e. NN /\ N e. ( ZZ>= ` 2 ) ) -> ( ( #b ` ( ( N - 1 ) / 2 ) ) + 1 ) = ( ( #b ` ( |_ ` ( N / 2 ) ) ) + 1 ) ) | 
						
							| 34 | 27 33 | eqtrd |  |-  ( ( ( ( N + 1 ) / 2 ) e. NN /\ N e. ( ZZ>= ` 2 ) ) -> ( #b ` N ) = ( ( #b ` ( |_ ` ( N / 2 ) ) ) + 1 ) ) | 
						
							| 35 | 34 | ex |  |-  ( ( ( N + 1 ) / 2 ) e. NN -> ( N e. ( ZZ>= ` 2 ) -> ( #b ` N ) = ( ( #b ` ( |_ ` ( N / 2 ) ) ) + 1 ) ) ) | 
						
							| 36 | 23 35 | jaoi |  |-  ( ( ( N / 2 ) e. NN \/ ( ( N + 1 ) / 2 ) e. NN ) -> ( N e. ( ZZ>= ` 2 ) -> ( #b ` N ) = ( ( #b ` ( |_ ` ( N / 2 ) ) ) + 1 ) ) ) | 
						
							| 37 | 3 36 | mpcom |  |-  ( N e. ( ZZ>= ` 2 ) -> ( #b ` N ) = ( ( #b ` ( |_ ` ( N / 2 ) ) ) + 1 ) ) |