| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eluz2nn | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  𝑁  ∈  ℕ ) | 
						
							| 2 |  | nneop | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 𝑁  /  2 )  ∈  ℕ  ∨  ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ ) ) | 
						
							| 3 | 1 2 | syl | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( ( 𝑁  /  2 )  ∈  ℕ  ∨  ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ ) ) | 
						
							| 4 |  | nnnn0 | ⊢ ( ( 𝑁  /  2 )  ∈  ℕ  →  ( 𝑁  /  2 )  ∈  ℕ0 ) | 
						
							| 5 |  | blennn0em1 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑁  /  2 )  ∈  ℕ0 )  →  ( #b ‘ ( 𝑁  /  2 ) )  =  ( ( #b ‘ 𝑁 )  −  1 ) ) | 
						
							| 6 | 4 5 | sylan2 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑁  /  2 )  ∈  ℕ )  →  ( #b ‘ ( 𝑁  /  2 ) )  =  ( ( #b ‘ 𝑁 )  −  1 ) ) | 
						
							| 7 | 6 | ancoms | ⊢ ( ( ( 𝑁  /  2 )  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( #b ‘ ( 𝑁  /  2 ) )  =  ( ( #b ‘ 𝑁 )  −  1 ) ) | 
						
							| 8 | 7 | oveq1d | ⊢ ( ( ( 𝑁  /  2 )  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( ( #b ‘ ( 𝑁  /  2 ) )  +  1 )  =  ( ( ( #b ‘ 𝑁 )  −  1 )  +  1 ) ) | 
						
							| 9 |  | nnz | ⊢ ( ( 𝑁  /  2 )  ∈  ℕ  →  ( 𝑁  /  2 )  ∈  ℤ ) | 
						
							| 10 |  | flid | ⊢ ( ( 𝑁  /  2 )  ∈  ℤ  →  ( ⌊ ‘ ( 𝑁  /  2 ) )  =  ( 𝑁  /  2 ) ) | 
						
							| 11 | 9 10 | syl | ⊢ ( ( 𝑁  /  2 )  ∈  ℕ  →  ( ⌊ ‘ ( 𝑁  /  2 ) )  =  ( 𝑁  /  2 ) ) | 
						
							| 12 | 11 | eqcomd | ⊢ ( ( 𝑁  /  2 )  ∈  ℕ  →  ( 𝑁  /  2 )  =  ( ⌊ ‘ ( 𝑁  /  2 ) ) ) | 
						
							| 13 | 12 | fveq2d | ⊢ ( ( 𝑁  /  2 )  ∈  ℕ  →  ( #b ‘ ( 𝑁  /  2 ) )  =  ( #b ‘ ( ⌊ ‘ ( 𝑁  /  2 ) ) ) ) | 
						
							| 14 | 13 | oveq1d | ⊢ ( ( 𝑁  /  2 )  ∈  ℕ  →  ( ( #b ‘ ( 𝑁  /  2 ) )  +  1 )  =  ( ( #b ‘ ( ⌊ ‘ ( 𝑁  /  2 ) ) )  +  1 ) ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( ( 𝑁  /  2 )  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( ( #b ‘ ( 𝑁  /  2 ) )  +  1 )  =  ( ( #b ‘ ( ⌊ ‘ ( 𝑁  /  2 ) ) )  +  1 ) ) | 
						
							| 16 |  | blennnelnn | ⊢ ( 𝑁  ∈  ℕ  →  ( #b ‘ 𝑁 )  ∈  ℕ ) | 
						
							| 17 | 16 | nncnd | ⊢ ( 𝑁  ∈  ℕ  →  ( #b ‘ 𝑁 )  ∈  ℂ ) | 
						
							| 18 |  | npcan1 | ⊢ ( ( #b ‘ 𝑁 )  ∈  ℂ  →  ( ( ( #b ‘ 𝑁 )  −  1 )  +  1 )  =  ( #b ‘ 𝑁 ) ) | 
						
							| 19 | 17 18 | syl | ⊢ ( 𝑁  ∈  ℕ  →  ( ( ( #b ‘ 𝑁 )  −  1 )  +  1 )  =  ( #b ‘ 𝑁 ) ) | 
						
							| 20 | 19 | adantl | ⊢ ( ( ( 𝑁  /  2 )  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( ( ( #b ‘ 𝑁 )  −  1 )  +  1 )  =  ( #b ‘ 𝑁 ) ) | 
						
							| 21 | 8 15 20 | 3eqtr3rd | ⊢ ( ( ( 𝑁  /  2 )  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( #b ‘ 𝑁 )  =  ( ( #b ‘ ( ⌊ ‘ ( 𝑁  /  2 ) ) )  +  1 ) ) | 
						
							| 22 | 21 | expcom | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 𝑁  /  2 )  ∈  ℕ  →  ( #b ‘ 𝑁 )  =  ( ( #b ‘ ( ⌊ ‘ ( 𝑁  /  2 ) ) )  +  1 ) ) ) | 
						
							| 23 | 22 1 | syl11 | ⊢ ( ( 𝑁  /  2 )  ∈  ℕ  →  ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( #b ‘ 𝑁 )  =  ( ( #b ‘ ( ⌊ ‘ ( 𝑁  /  2 ) ) )  +  1 ) ) ) | 
						
							| 24 |  | nnnn0 | ⊢ ( ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ  →  ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ0 ) | 
						
							| 25 |  | blennngt2o2 | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ0 )  →  ( #b ‘ 𝑁 )  =  ( ( #b ‘ ( ( 𝑁  −  1 )  /  2 ) )  +  1 ) ) | 
						
							| 26 | 24 25 | sylan2 | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ )  →  ( #b ‘ 𝑁 )  =  ( ( #b ‘ ( ( 𝑁  −  1 )  /  2 ) )  +  1 ) ) | 
						
							| 27 | 26 | ancoms | ⊢ ( ( ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ  ∧  𝑁  ∈  ( ℤ≥ ‘ 2 ) )  →  ( #b ‘ 𝑁 )  =  ( ( #b ‘ ( ( 𝑁  −  1 )  /  2 ) )  +  1 ) ) | 
						
							| 28 |  | eluzge2nn0 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  𝑁  ∈  ℕ0 ) | 
						
							| 29 |  | nn0ofldiv2 | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ0 )  →  ( ⌊ ‘ ( 𝑁  /  2 ) )  =  ( ( 𝑁  −  1 )  /  2 ) ) | 
						
							| 30 | 28 24 29 | syl2anr | ⊢ ( ( ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ  ∧  𝑁  ∈  ( ℤ≥ ‘ 2 ) )  →  ( ⌊ ‘ ( 𝑁  /  2 ) )  =  ( ( 𝑁  −  1 )  /  2 ) ) | 
						
							| 31 | 30 | eqcomd | ⊢ ( ( ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ  ∧  𝑁  ∈  ( ℤ≥ ‘ 2 ) )  →  ( ( 𝑁  −  1 )  /  2 )  =  ( ⌊ ‘ ( 𝑁  /  2 ) ) ) | 
						
							| 32 | 31 | fveq2d | ⊢ ( ( ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ  ∧  𝑁  ∈  ( ℤ≥ ‘ 2 ) )  →  ( #b ‘ ( ( 𝑁  −  1 )  /  2 ) )  =  ( #b ‘ ( ⌊ ‘ ( 𝑁  /  2 ) ) ) ) | 
						
							| 33 | 32 | oveq1d | ⊢ ( ( ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ  ∧  𝑁  ∈  ( ℤ≥ ‘ 2 ) )  →  ( ( #b ‘ ( ( 𝑁  −  1 )  /  2 ) )  +  1 )  =  ( ( #b ‘ ( ⌊ ‘ ( 𝑁  /  2 ) ) )  +  1 ) ) | 
						
							| 34 | 27 33 | eqtrd | ⊢ ( ( ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ  ∧  𝑁  ∈  ( ℤ≥ ‘ 2 ) )  →  ( #b ‘ 𝑁 )  =  ( ( #b ‘ ( ⌊ ‘ ( 𝑁  /  2 ) ) )  +  1 ) ) | 
						
							| 35 | 34 | ex | ⊢ ( ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ  →  ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( #b ‘ 𝑁 )  =  ( ( #b ‘ ( ⌊ ‘ ( 𝑁  /  2 ) ) )  +  1 ) ) ) | 
						
							| 36 | 23 35 | jaoi | ⊢ ( ( ( 𝑁  /  2 )  ∈  ℕ  ∨  ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ )  →  ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( #b ‘ 𝑁 )  =  ( ( #b ‘ ( ⌊ ‘ ( 𝑁  /  2 ) ) )  +  1 ) ) ) | 
						
							| 37 | 3 36 | mpcom | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( #b ‘ 𝑁 )  =  ( ( #b ‘ ( ⌊ ‘ ( 𝑁  /  2 ) ) )  +  1 ) ) |