Metamath Proof Explorer


Theorem blengt1fldiv2p1

Description: The binary length of an integer greater than 1 is the binary length of the integer divided by 2, increased by one. (Contributed by AV, 3-Jun-2020)

Ref Expression
Assertion blengt1fldiv2p1 N2#b N = #b N2+1

Proof

Step Hyp Ref Expression
1 eluz2nn N2N
2 nneop NN2N+12
3 1 2 syl N2N2N+12
4 nnnn0 N2N20
5 blennn0em1 NN20#b N2 = #b N1
6 4 5 sylan2 NN2#b N2 = #b N1
7 6 ancoms N2N#b N2 = #b N1
8 7 oveq1d N2N#b N2 + 1 = #b N-1+1
9 nnz N2N2
10 flid N2N2=N2
11 9 10 syl N2N2=N2
12 11 eqcomd N2N2=N2
13 12 fveq2d N2#b N2 = #b N2
14 13 oveq1d N2#b N2 + 1 = #b N2+1
15 14 adantr N2N#b N2 + 1 = #b N2+1
16 blennnelnn N#b N
17 16 nncnd N#b N
18 npcan1 #b N #b N-1+1=#b N
19 17 18 syl N#b N - 1 + 1 = #b N
20 19 adantl N2N#b N - 1 + 1 = #b N
21 8 15 20 3eqtr3rd N2N#b N = #b N2+1
22 21 expcom NN2#b N = #b N2+1
23 22 1 syl11 N2N2#b N = #b N2+1
24 nnnn0 N+12N+120
25 blennngt2o2 N2N+120#b N = #b N12+1
26 24 25 sylan2 N2N+12#b N = #b N12+1
27 26 ancoms N+12N2#b N = #b N12+1
28 eluzge2nn0 N2N0
29 nn0ofldiv2 N0N+120N2=N12
30 28 24 29 syl2anr N+12N2N2=N12
31 30 eqcomd N+12N2N12=N2
32 31 fveq2d N+12N2#b N12 = #b N2
33 32 oveq1d N+12N2#b N12 + 1 = #b N2+1
34 27 33 eqtrd N+12N2#b N = #b N2+1
35 34 ex N+12N2#b N = #b N2+1
36 23 35 jaoi N2N+12N2#b N = #b N2+1
37 3 36 mpcom N2#b N = #b N2+1