Metamath Proof Explorer


Theorem blennngt2o2

Description: The binary length of an odd integer greater than 1 is the binary length of the half of the integer decreased by 1, increased by 1. (Contributed by AV, 3-Jun-2020)

Ref Expression
Assertion blennngt2o2 N2N+120#b N = #b N12+1

Proof

Step Hyp Ref Expression
1 2rp 2+
2 1ne2 12
3 2 necomi 21
4 eldifsn 2+12+21
5 1 3 4 mpbir2an 2+1
6 uz2m1nn N2N1
7 6 nnrpd N2N1+
8 7 adantr N2N+120N1+
9 relogbdivb 2+1N1+log2N12=log2N11
10 5 8 9 sylancr N2N+120log2N12=log2N11
11 10 fveq2d N2N+120log2N12=log2N11
12 11 oveq1d N2N+120log2N12+1=log2N11+1
13 1 a1i N22+
14 3 a1i N221
15 relogbcl 2+N1+21log2N1
16 13 7 14 15 syl3anc N2log2N1
17 1z 1
18 16 17 jctir N2log2N11
19 18 adantr N2N+120log2N11
20 flsubz log2N11log2N11=log2N11
21 19 20 syl N2N+120log2N11=log2N11
22 21 oveq1d N2N+120log2N11+1=log2N1-1+1
23 16 flcld N2log2N1
24 23 zcnd N2log2N1
25 npcan1 log2N1log2N1-1+1=log2N1
26 24 25 syl N2log2N1-1+1=log2N1
27 26 adantr N2N+120log2N1-1+1=log2N1
28 eluz2nn N2N
29 28 peano2nnd N2N+1
30 29 nnred N2N+1
31 2re 2
32 31 a1i N22
33 eluzge2nn0 N2N0
34 nn0p1gt0 N00<N+1
35 33 34 syl N20<N+1
36 2pos 0<2
37 36 a1i N20<2
38 30 32 35 37 divgt0d N20<N+12
39 nn0z N+120N+12
40 38 39 anim12ci N2N+120N+120<N+12
41 elnnz N+12N+120<N+12
42 40 41 sylibr N2N+120N+12
43 nnolog2flm1 N2N+12log2N=log2N1
44 42 43 syldan N2N+120log2N=log2N1
45 27 44 eqtr4d N2N+120log2N1-1+1=log2N
46 12 22 45 3eqtrd N2N+120log2N12+1=log2N
47 46 oveq1d N2N+120log2N12+1+1=log2N+1
48 nno N2N+120N12
49 blennn N12#b N12 = log2N12+1
50 49 oveq1d N12#b N12 + 1 = log2N12+1+1
51 48 50 syl N2N+120#b N12 + 1 = log2N12+1+1
52 blennn N#b N = log2N+1
53 28 52 syl N2#b N = log2N+1
54 53 adantr N2N+120#b N = log2N+1
55 47 51 54 3eqtr4rd N2N+120#b N = #b N12+1