| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2rp |  |-  2 e. RR+ | 
						
							| 2 |  | 1ne2 |  |-  1 =/= 2 | 
						
							| 3 | 2 | necomi |  |-  2 =/= 1 | 
						
							| 4 |  | eldifsn |  |-  ( 2 e. ( RR+ \ { 1 } ) <-> ( 2 e. RR+ /\ 2 =/= 1 ) ) | 
						
							| 5 | 1 3 4 | mpbir2an |  |-  2 e. ( RR+ \ { 1 } ) | 
						
							| 6 |  | nnrp |  |-  ( N e. NN -> N e. RR+ ) | 
						
							| 7 | 6 | adantr |  |-  ( ( N e. NN /\ ( N / 2 ) e. NN0 ) -> N e. RR+ ) | 
						
							| 8 |  | relogbdivb |  |-  ( ( 2 e. ( RR+ \ { 1 } ) /\ N e. RR+ ) -> ( 2 logb ( N / 2 ) ) = ( ( 2 logb N ) - 1 ) ) | 
						
							| 9 | 5 7 8 | sylancr |  |-  ( ( N e. NN /\ ( N / 2 ) e. NN0 ) -> ( 2 logb ( N / 2 ) ) = ( ( 2 logb N ) - 1 ) ) | 
						
							| 10 | 9 | fveq2d |  |-  ( ( N e. NN /\ ( N / 2 ) e. NN0 ) -> ( |_ ` ( 2 logb ( N / 2 ) ) ) = ( |_ ` ( ( 2 logb N ) - 1 ) ) ) | 
						
							| 11 | 10 | oveq1d |  |-  ( ( N e. NN /\ ( N / 2 ) e. NN0 ) -> ( ( |_ ` ( 2 logb ( N / 2 ) ) ) + 1 ) = ( ( |_ ` ( ( 2 logb N ) - 1 ) ) + 1 ) ) | 
						
							| 12 | 1 | a1i |  |-  ( N e. NN -> 2 e. RR+ ) | 
						
							| 13 | 3 | a1i |  |-  ( N e. NN -> 2 =/= 1 ) | 
						
							| 14 |  | relogbcl |  |-  ( ( 2 e. RR+ /\ N e. RR+ /\ 2 =/= 1 ) -> ( 2 logb N ) e. RR ) | 
						
							| 15 | 12 6 13 14 | syl3anc |  |-  ( N e. NN -> ( 2 logb N ) e. RR ) | 
						
							| 16 |  | 1zzd |  |-  ( N e. NN -> 1 e. ZZ ) | 
						
							| 17 | 15 16 | jca |  |-  ( N e. NN -> ( ( 2 logb N ) e. RR /\ 1 e. ZZ ) ) | 
						
							| 18 | 17 | adantr |  |-  ( ( N e. NN /\ ( N / 2 ) e. NN0 ) -> ( ( 2 logb N ) e. RR /\ 1 e. ZZ ) ) | 
						
							| 19 |  | flsubz |  |-  ( ( ( 2 logb N ) e. RR /\ 1 e. ZZ ) -> ( |_ ` ( ( 2 logb N ) - 1 ) ) = ( ( |_ ` ( 2 logb N ) ) - 1 ) ) | 
						
							| 20 | 18 19 | syl |  |-  ( ( N e. NN /\ ( N / 2 ) e. NN0 ) -> ( |_ ` ( ( 2 logb N ) - 1 ) ) = ( ( |_ ` ( 2 logb N ) ) - 1 ) ) | 
						
							| 21 | 20 | oveq1d |  |-  ( ( N e. NN /\ ( N / 2 ) e. NN0 ) -> ( ( |_ ` ( ( 2 logb N ) - 1 ) ) + 1 ) = ( ( ( |_ ` ( 2 logb N ) ) - 1 ) + 1 ) ) | 
						
							| 22 | 15 | flcld |  |-  ( N e. NN -> ( |_ ` ( 2 logb N ) ) e. ZZ ) | 
						
							| 23 | 22 | zcnd |  |-  ( N e. NN -> ( |_ ` ( 2 logb N ) ) e. CC ) | 
						
							| 24 |  | npcan1 |  |-  ( ( |_ ` ( 2 logb N ) ) e. CC -> ( ( ( |_ ` ( 2 logb N ) ) - 1 ) + 1 ) = ( |_ ` ( 2 logb N ) ) ) | 
						
							| 25 | 23 24 | syl |  |-  ( N e. NN -> ( ( ( |_ ` ( 2 logb N ) ) - 1 ) + 1 ) = ( |_ ` ( 2 logb N ) ) ) | 
						
							| 26 | 25 | adantr |  |-  ( ( N e. NN /\ ( N / 2 ) e. NN0 ) -> ( ( ( |_ ` ( 2 logb N ) ) - 1 ) + 1 ) = ( |_ ` ( 2 logb N ) ) ) | 
						
							| 27 | 11 21 26 | 3eqtrd |  |-  ( ( N e. NN /\ ( N / 2 ) e. NN0 ) -> ( ( |_ ` ( 2 logb ( N / 2 ) ) ) + 1 ) = ( |_ ` ( 2 logb N ) ) ) | 
						
							| 28 | 27 | oveq1d |  |-  ( ( N e. NN /\ ( N / 2 ) e. NN0 ) -> ( ( ( |_ ` ( 2 logb ( N / 2 ) ) ) + 1 ) + 1 ) = ( ( |_ ` ( 2 logb N ) ) + 1 ) ) | 
						
							| 29 |  | nn0enne |  |-  ( N e. NN -> ( ( N / 2 ) e. NN0 <-> ( N / 2 ) e. NN ) ) | 
						
							| 30 | 29 | biimpa |  |-  ( ( N e. NN /\ ( N / 2 ) e. NN0 ) -> ( N / 2 ) e. NN ) | 
						
							| 31 |  | blennn |  |-  ( ( N / 2 ) e. NN -> ( #b ` ( N / 2 ) ) = ( ( |_ ` ( 2 logb ( N / 2 ) ) ) + 1 ) ) | 
						
							| 32 | 31 | oveq1d |  |-  ( ( N / 2 ) e. NN -> ( ( #b ` ( N / 2 ) ) + 1 ) = ( ( ( |_ ` ( 2 logb ( N / 2 ) ) ) + 1 ) + 1 ) ) | 
						
							| 33 | 30 32 | syl |  |-  ( ( N e. NN /\ ( N / 2 ) e. NN0 ) -> ( ( #b ` ( N / 2 ) ) + 1 ) = ( ( ( |_ ` ( 2 logb ( N / 2 ) ) ) + 1 ) + 1 ) ) | 
						
							| 34 |  | blennn |  |-  ( N e. NN -> ( #b ` N ) = ( ( |_ ` ( 2 logb N ) ) + 1 ) ) | 
						
							| 35 | 34 | adantr |  |-  ( ( N e. NN /\ ( N / 2 ) e. NN0 ) -> ( #b ` N ) = ( ( |_ ` ( 2 logb N ) ) + 1 ) ) | 
						
							| 36 | 28 33 35 | 3eqtr4rd |  |-  ( ( N e. NN /\ ( N / 2 ) e. NN0 ) -> ( #b ` N ) = ( ( #b ` ( N / 2 ) ) + 1 ) ) |