Step |
Hyp |
Ref |
Expression |
1 |
|
2rp |
|- 2 e. RR+ |
2 |
|
1ne2 |
|- 1 =/= 2 |
3 |
2
|
necomi |
|- 2 =/= 1 |
4 |
|
eldifsn |
|- ( 2 e. ( RR+ \ { 1 } ) <-> ( 2 e. RR+ /\ 2 =/= 1 ) ) |
5 |
1 3 4
|
mpbir2an |
|- 2 e. ( RR+ \ { 1 } ) |
6 |
|
nnrp |
|- ( N e. NN -> N e. RR+ ) |
7 |
6
|
adantr |
|- ( ( N e. NN /\ ( N / 2 ) e. NN0 ) -> N e. RR+ ) |
8 |
|
relogbdivb |
|- ( ( 2 e. ( RR+ \ { 1 } ) /\ N e. RR+ ) -> ( 2 logb ( N / 2 ) ) = ( ( 2 logb N ) - 1 ) ) |
9 |
5 7 8
|
sylancr |
|- ( ( N e. NN /\ ( N / 2 ) e. NN0 ) -> ( 2 logb ( N / 2 ) ) = ( ( 2 logb N ) - 1 ) ) |
10 |
9
|
fveq2d |
|- ( ( N e. NN /\ ( N / 2 ) e. NN0 ) -> ( |_ ` ( 2 logb ( N / 2 ) ) ) = ( |_ ` ( ( 2 logb N ) - 1 ) ) ) |
11 |
10
|
oveq1d |
|- ( ( N e. NN /\ ( N / 2 ) e. NN0 ) -> ( ( |_ ` ( 2 logb ( N / 2 ) ) ) + 1 ) = ( ( |_ ` ( ( 2 logb N ) - 1 ) ) + 1 ) ) |
12 |
1
|
a1i |
|- ( N e. NN -> 2 e. RR+ ) |
13 |
3
|
a1i |
|- ( N e. NN -> 2 =/= 1 ) |
14 |
|
relogbcl |
|- ( ( 2 e. RR+ /\ N e. RR+ /\ 2 =/= 1 ) -> ( 2 logb N ) e. RR ) |
15 |
12 6 13 14
|
syl3anc |
|- ( N e. NN -> ( 2 logb N ) e. RR ) |
16 |
|
1zzd |
|- ( N e. NN -> 1 e. ZZ ) |
17 |
15 16
|
jca |
|- ( N e. NN -> ( ( 2 logb N ) e. RR /\ 1 e. ZZ ) ) |
18 |
17
|
adantr |
|- ( ( N e. NN /\ ( N / 2 ) e. NN0 ) -> ( ( 2 logb N ) e. RR /\ 1 e. ZZ ) ) |
19 |
|
flsubz |
|- ( ( ( 2 logb N ) e. RR /\ 1 e. ZZ ) -> ( |_ ` ( ( 2 logb N ) - 1 ) ) = ( ( |_ ` ( 2 logb N ) ) - 1 ) ) |
20 |
18 19
|
syl |
|- ( ( N e. NN /\ ( N / 2 ) e. NN0 ) -> ( |_ ` ( ( 2 logb N ) - 1 ) ) = ( ( |_ ` ( 2 logb N ) ) - 1 ) ) |
21 |
20
|
oveq1d |
|- ( ( N e. NN /\ ( N / 2 ) e. NN0 ) -> ( ( |_ ` ( ( 2 logb N ) - 1 ) ) + 1 ) = ( ( ( |_ ` ( 2 logb N ) ) - 1 ) + 1 ) ) |
22 |
15
|
flcld |
|- ( N e. NN -> ( |_ ` ( 2 logb N ) ) e. ZZ ) |
23 |
22
|
zcnd |
|- ( N e. NN -> ( |_ ` ( 2 logb N ) ) e. CC ) |
24 |
|
npcan1 |
|- ( ( |_ ` ( 2 logb N ) ) e. CC -> ( ( ( |_ ` ( 2 logb N ) ) - 1 ) + 1 ) = ( |_ ` ( 2 logb N ) ) ) |
25 |
23 24
|
syl |
|- ( N e. NN -> ( ( ( |_ ` ( 2 logb N ) ) - 1 ) + 1 ) = ( |_ ` ( 2 logb N ) ) ) |
26 |
25
|
adantr |
|- ( ( N e. NN /\ ( N / 2 ) e. NN0 ) -> ( ( ( |_ ` ( 2 logb N ) ) - 1 ) + 1 ) = ( |_ ` ( 2 logb N ) ) ) |
27 |
11 21 26
|
3eqtrd |
|- ( ( N e. NN /\ ( N / 2 ) e. NN0 ) -> ( ( |_ ` ( 2 logb ( N / 2 ) ) ) + 1 ) = ( |_ ` ( 2 logb N ) ) ) |
28 |
27
|
oveq1d |
|- ( ( N e. NN /\ ( N / 2 ) e. NN0 ) -> ( ( ( |_ ` ( 2 logb ( N / 2 ) ) ) + 1 ) + 1 ) = ( ( |_ ` ( 2 logb N ) ) + 1 ) ) |
29 |
|
nn0enne |
|- ( N e. NN -> ( ( N / 2 ) e. NN0 <-> ( N / 2 ) e. NN ) ) |
30 |
29
|
biimpa |
|- ( ( N e. NN /\ ( N / 2 ) e. NN0 ) -> ( N / 2 ) e. NN ) |
31 |
|
blennn |
|- ( ( N / 2 ) e. NN -> ( #b ` ( N / 2 ) ) = ( ( |_ ` ( 2 logb ( N / 2 ) ) ) + 1 ) ) |
32 |
31
|
oveq1d |
|- ( ( N / 2 ) e. NN -> ( ( #b ` ( N / 2 ) ) + 1 ) = ( ( ( |_ ` ( 2 logb ( N / 2 ) ) ) + 1 ) + 1 ) ) |
33 |
30 32
|
syl |
|- ( ( N e. NN /\ ( N / 2 ) e. NN0 ) -> ( ( #b ` ( N / 2 ) ) + 1 ) = ( ( ( |_ ` ( 2 logb ( N / 2 ) ) ) + 1 ) + 1 ) ) |
34 |
|
blennn |
|- ( N e. NN -> ( #b ` N ) = ( ( |_ ` ( 2 logb N ) ) + 1 ) ) |
35 |
34
|
adantr |
|- ( ( N e. NN /\ ( N / 2 ) e. NN0 ) -> ( #b ` N ) = ( ( |_ ` ( 2 logb N ) ) + 1 ) ) |
36 |
28 33 35
|
3eqtr4rd |
|- ( ( N e. NN /\ ( N / 2 ) e. NN0 ) -> ( #b ` N ) = ( ( #b ` ( N / 2 ) ) + 1 ) ) |