| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj543.1 |
⊢ ( 𝜑′ ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) |
| 2 |
|
bnj543.2 |
⊢ ( 𝜓′ ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑚 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
| 3 |
|
bnj543.3 |
⊢ 𝐺 = ( 𝑓 ∪ { 〈 𝑚 , ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) 〉 } ) |
| 4 |
|
bnj543.4 |
⊢ ( 𝜏 ↔ ( 𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′ ) ) |
| 5 |
|
bnj543.5 |
⊢ ( 𝜎 ↔ ( 𝑚 ∈ ω ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚 ) ) |
| 6 |
|
bnj257 |
⊢ ( ( ( 𝜑′ ∧ 𝜓′ ) ∧ ( 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚 ) ∧ 𝑛 = suc 𝑚 ∧ 𝑓 Fn 𝑚 ) ↔ ( ( 𝜑′ ∧ 𝜓′ ) ∧ ( 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚 ) ∧ 𝑓 Fn 𝑚 ∧ 𝑛 = suc 𝑚 ) ) |
| 7 |
|
bnj268 |
⊢ ( ( ( 𝜑′ ∧ 𝜓′ ) ∧ ( 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚 ) ∧ 𝑓 Fn 𝑚 ∧ 𝑛 = suc 𝑚 ) ↔ ( ( 𝜑′ ∧ 𝜓′ ) ∧ 𝑓 Fn 𝑚 ∧ ( 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚 ) ∧ 𝑛 = suc 𝑚 ) ) |
| 8 |
6 7
|
bitri |
⊢ ( ( ( 𝜑′ ∧ 𝜓′ ) ∧ ( 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚 ) ∧ 𝑛 = suc 𝑚 ∧ 𝑓 Fn 𝑚 ) ↔ ( ( 𝜑′ ∧ 𝜓′ ) ∧ 𝑓 Fn 𝑚 ∧ ( 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚 ) ∧ 𝑛 = suc 𝑚 ) ) |
| 9 |
|
bnj253 |
⊢ ( ( ( 𝜑′ ∧ 𝜓′ ) ∧ ( 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚 ) ∧ 𝑛 = suc 𝑚 ∧ 𝑓 Fn 𝑚 ) ↔ ( ( ( 𝜑′ ∧ 𝜓′ ) ∧ ( 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚 ) ) ∧ 𝑛 = suc 𝑚 ∧ 𝑓 Fn 𝑚 ) ) |
| 10 |
|
bnj256 |
⊢ ( ( ( 𝜑′ ∧ 𝜓′ ) ∧ 𝑓 Fn 𝑚 ∧ ( 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚 ) ∧ 𝑛 = suc 𝑚 ) ↔ ( ( ( 𝜑′ ∧ 𝜓′ ) ∧ 𝑓 Fn 𝑚 ) ∧ ( ( 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚 ) ∧ 𝑛 = suc 𝑚 ) ) ) |
| 11 |
8 9 10
|
3bitr3i |
⊢ ( ( ( ( 𝜑′ ∧ 𝜓′ ) ∧ ( 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚 ) ) ∧ 𝑛 = suc 𝑚 ∧ 𝑓 Fn 𝑚 ) ↔ ( ( ( 𝜑′ ∧ 𝜓′ ) ∧ 𝑓 Fn 𝑚 ) ∧ ( ( 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚 ) ∧ 𝑛 = suc 𝑚 ) ) ) |
| 12 |
|
bnj256 |
⊢ ( ( 𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚 ) ↔ ( ( 𝜑′ ∧ 𝜓′ ) ∧ ( 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚 ) ) ) |
| 13 |
12
|
3anbi1i |
⊢ ( ( ( 𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚 ) ∧ 𝑛 = suc 𝑚 ∧ 𝑓 Fn 𝑚 ) ↔ ( ( ( 𝜑′ ∧ 𝜓′ ) ∧ ( 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚 ) ) ∧ 𝑛 = suc 𝑚 ∧ 𝑓 Fn 𝑚 ) ) |
| 14 |
|
bnj170 |
⊢ ( ( 𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′ ) ↔ ( ( 𝜑′ ∧ 𝜓′ ) ∧ 𝑓 Fn 𝑚 ) ) |
| 15 |
4 14
|
bitri |
⊢ ( 𝜏 ↔ ( ( 𝜑′ ∧ 𝜓′ ) ∧ 𝑓 Fn 𝑚 ) ) |
| 16 |
|
3anan32 |
⊢ ( ( 𝑚 ∈ ω ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚 ) ↔ ( ( 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚 ) ∧ 𝑛 = suc 𝑚 ) ) |
| 17 |
5 16
|
bitri |
⊢ ( 𝜎 ↔ ( ( 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚 ) ∧ 𝑛 = suc 𝑚 ) ) |
| 18 |
15 17
|
anbi12i |
⊢ ( ( 𝜏 ∧ 𝜎 ) ↔ ( ( ( 𝜑′ ∧ 𝜓′ ) ∧ 𝑓 Fn 𝑚 ) ∧ ( ( 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚 ) ∧ 𝑛 = suc 𝑚 ) ) ) |
| 19 |
11 13 18
|
3bitr4ri |
⊢ ( ( 𝜏 ∧ 𝜎 ) ↔ ( ( 𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚 ) ∧ 𝑛 = suc 𝑚 ∧ 𝑓 Fn 𝑚 ) ) |
| 20 |
19
|
anbi2i |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ ( 𝜏 ∧ 𝜎 ) ) ↔ ( 𝑅 FrSe 𝐴 ∧ ( ( 𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚 ) ∧ 𝑛 = suc 𝑚 ∧ 𝑓 Fn 𝑚 ) ) ) |
| 21 |
|
3anass |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎 ) ↔ ( 𝑅 FrSe 𝐴 ∧ ( 𝜏 ∧ 𝜎 ) ) ) |
| 22 |
|
bnj252 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ ( 𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚 ) ∧ 𝑛 = suc 𝑚 ∧ 𝑓 Fn 𝑚 ) ↔ ( 𝑅 FrSe 𝐴 ∧ ( ( 𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚 ) ∧ 𝑛 = suc 𝑚 ∧ 𝑓 Fn 𝑚 ) ) ) |
| 23 |
20 21 22
|
3bitr4i |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎 ) ↔ ( 𝑅 FrSe 𝐴 ∧ ( 𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚 ) ∧ 𝑛 = suc 𝑚 ∧ 𝑓 Fn 𝑚 ) ) |
| 24 |
|
df-suc |
⊢ suc 𝑚 = ( 𝑚 ∪ { 𝑚 } ) |
| 25 |
24
|
eqeq2i |
⊢ ( 𝑛 = suc 𝑚 ↔ 𝑛 = ( 𝑚 ∪ { 𝑚 } ) ) |
| 26 |
25
|
3anbi2i |
⊢ ( ( ( 𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚 ) ∧ 𝑛 = suc 𝑚 ∧ 𝑓 Fn 𝑚 ) ↔ ( ( 𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚 ) ∧ 𝑛 = ( 𝑚 ∪ { 𝑚 } ) ∧ 𝑓 Fn 𝑚 ) ) |
| 27 |
26
|
anbi2i |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ ( ( 𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚 ) ∧ 𝑛 = suc 𝑚 ∧ 𝑓 Fn 𝑚 ) ) ↔ ( 𝑅 FrSe 𝐴 ∧ ( ( 𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚 ) ∧ 𝑛 = ( 𝑚 ∪ { 𝑚 } ) ∧ 𝑓 Fn 𝑚 ) ) ) |
| 28 |
|
bnj252 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ ( 𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚 ) ∧ 𝑛 = ( 𝑚 ∪ { 𝑚 } ) ∧ 𝑓 Fn 𝑚 ) ↔ ( 𝑅 FrSe 𝐴 ∧ ( ( 𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚 ) ∧ 𝑛 = ( 𝑚 ∪ { 𝑚 } ) ∧ 𝑓 Fn 𝑚 ) ) ) |
| 29 |
27 22 28
|
3bitr4i |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ ( 𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚 ) ∧ 𝑛 = suc 𝑚 ∧ 𝑓 Fn 𝑚 ) ↔ ( 𝑅 FrSe 𝐴 ∧ ( 𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚 ) ∧ 𝑛 = ( 𝑚 ∪ { 𝑚 } ) ∧ 𝑓 Fn 𝑚 ) ) |
| 30 |
|
biid |
⊢ ( ( 𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚 ) ↔ ( 𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚 ) ) |
| 31 |
1 2 3 30
|
bnj535 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ ( 𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚 ) ∧ 𝑛 = ( 𝑚 ∪ { 𝑚 } ) ∧ 𝑓 Fn 𝑚 ) → 𝐺 Fn 𝑛 ) |
| 32 |
29 31
|
sylbi |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ ( 𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚 ) ∧ 𝑛 = suc 𝑚 ∧ 𝑓 Fn 𝑚 ) → 𝐺 Fn 𝑛 ) |
| 33 |
23 32
|
sylbi |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎 ) → 𝐺 Fn 𝑛 ) |