Metamath Proof Explorer


Theorem cardprclem

Description: Lemma for cardprc . (Contributed by Mario Carneiro, 22-Jan-2013) (Revised by Mario Carneiro, 15-May-2015)

Ref Expression
Hypothesis cardprclem.1 𝐴 = { 𝑥 ∣ ( card ‘ 𝑥 ) = 𝑥 }
Assertion cardprclem ¬ 𝐴 ∈ V

Proof

Step Hyp Ref Expression
1 cardprclem.1 𝐴 = { 𝑥 ∣ ( card ‘ 𝑥 ) = 𝑥 }
2 1 eleq2i ( 𝑥𝐴𝑥 ∈ { 𝑥 ∣ ( card ‘ 𝑥 ) = 𝑥 } )
3 abid ( 𝑥 ∈ { 𝑥 ∣ ( card ‘ 𝑥 ) = 𝑥 } ↔ ( card ‘ 𝑥 ) = 𝑥 )
4 iscard ( ( card ‘ 𝑥 ) = 𝑥 ↔ ( 𝑥 ∈ On ∧ ∀ 𝑦𝑥 𝑦𝑥 ) )
5 2 3 4 3bitri ( 𝑥𝐴 ↔ ( 𝑥 ∈ On ∧ ∀ 𝑦𝑥 𝑦𝑥 ) )
6 5 simplbi ( 𝑥𝐴𝑥 ∈ On )
7 6 ssriv 𝐴 ⊆ On
8 ssonuni ( 𝐴 ∈ V → ( 𝐴 ⊆ On → 𝐴 ∈ On ) )
9 7 8 mpi ( 𝐴 ∈ V → 𝐴 ∈ On )
10 domrefg ( 𝐴 ∈ On → 𝐴 𝐴 )
11 9 10 syl ( 𝐴 ∈ V → 𝐴 𝐴 )
12 elharval ( 𝐴 ∈ ( har ‘ 𝐴 ) ↔ ( 𝐴 ∈ On ∧ 𝐴 𝐴 ) )
13 9 11 12 sylanbrc ( 𝐴 ∈ V → 𝐴 ∈ ( har ‘ 𝐴 ) )
14 7 sseli ( 𝑧𝐴𝑧 ∈ On )
15 domrefg ( 𝑧 ∈ On → 𝑧𝑧 )
16 15 ancli ( 𝑧 ∈ On → ( 𝑧 ∈ On ∧ 𝑧𝑧 ) )
17 elharval ( 𝑧 ∈ ( har ‘ 𝑧 ) ↔ ( 𝑧 ∈ On ∧ 𝑧𝑧 ) )
18 16 17 sylibr ( 𝑧 ∈ On → 𝑧 ∈ ( har ‘ 𝑧 ) )
19 14 18 syl ( 𝑧𝐴𝑧 ∈ ( har ‘ 𝑧 ) )
20 harcard ( card ‘ ( har ‘ 𝑧 ) ) = ( har ‘ 𝑧 )
21 fvex ( har ‘ 𝑧 ) ∈ V
22 fveq2 ( 𝑥 = ( har ‘ 𝑧 ) → ( card ‘ 𝑥 ) = ( card ‘ ( har ‘ 𝑧 ) ) )
23 id ( 𝑥 = ( har ‘ 𝑧 ) → 𝑥 = ( har ‘ 𝑧 ) )
24 22 23 eqeq12d ( 𝑥 = ( har ‘ 𝑧 ) → ( ( card ‘ 𝑥 ) = 𝑥 ↔ ( card ‘ ( har ‘ 𝑧 ) ) = ( har ‘ 𝑧 ) ) )
25 21 24 1 elab2 ( ( har ‘ 𝑧 ) ∈ 𝐴 ↔ ( card ‘ ( har ‘ 𝑧 ) ) = ( har ‘ 𝑧 ) )
26 20 25 mpbir ( har ‘ 𝑧 ) ∈ 𝐴
27 eleq2 ( 𝑤 = ( har ‘ 𝑧 ) → ( 𝑧𝑤𝑧 ∈ ( har ‘ 𝑧 ) ) )
28 eleq1 ( 𝑤 = ( har ‘ 𝑧 ) → ( 𝑤𝐴 ↔ ( har ‘ 𝑧 ) ∈ 𝐴 ) )
29 27 28 anbi12d ( 𝑤 = ( har ‘ 𝑧 ) → ( ( 𝑧𝑤𝑤𝐴 ) ↔ ( 𝑧 ∈ ( har ‘ 𝑧 ) ∧ ( har ‘ 𝑧 ) ∈ 𝐴 ) ) )
30 21 29 spcev ( ( 𝑧 ∈ ( har ‘ 𝑧 ) ∧ ( har ‘ 𝑧 ) ∈ 𝐴 ) → ∃ 𝑤 ( 𝑧𝑤𝑤𝐴 ) )
31 19 26 30 sylancl ( 𝑧𝐴 → ∃ 𝑤 ( 𝑧𝑤𝑤𝐴 ) )
32 eluni ( 𝑧 𝐴 ↔ ∃ 𝑤 ( 𝑧𝑤𝑤𝐴 ) )
33 31 32 sylibr ( 𝑧𝐴𝑧 𝐴 )
34 33 ssriv 𝐴 𝐴
35 harcard ( card ‘ ( har ‘ 𝐴 ) ) = ( har ‘ 𝐴 )
36 fvex ( har ‘ 𝐴 ) ∈ V
37 fveq2 ( 𝑥 = ( har ‘ 𝐴 ) → ( card ‘ 𝑥 ) = ( card ‘ ( har ‘ 𝐴 ) ) )
38 id ( 𝑥 = ( har ‘ 𝐴 ) → 𝑥 = ( har ‘ 𝐴 ) )
39 37 38 eqeq12d ( 𝑥 = ( har ‘ 𝐴 ) → ( ( card ‘ 𝑥 ) = 𝑥 ↔ ( card ‘ ( har ‘ 𝐴 ) ) = ( har ‘ 𝐴 ) ) )
40 36 39 1 elab2 ( ( har ‘ 𝐴 ) ∈ 𝐴 ↔ ( card ‘ ( har ‘ 𝐴 ) ) = ( har ‘ 𝐴 ) )
41 35 40 mpbir ( har ‘ 𝐴 ) ∈ 𝐴
42 34 41 sselii ( har ‘ 𝐴 ) ∈ 𝐴
43 13 42 jctir ( 𝐴 ∈ V → ( 𝐴 ∈ ( har ‘ 𝐴 ) ∧ ( har ‘ 𝐴 ) ∈ 𝐴 ) )
44 eloni ( 𝐴 ∈ On → Ord 𝐴 )
45 ordn2lp ( Ord 𝐴 → ¬ ( 𝐴 ∈ ( har ‘ 𝐴 ) ∧ ( har ‘ 𝐴 ) ∈ 𝐴 ) )
46 9 44 45 3syl ( 𝐴 ∈ V → ¬ ( 𝐴 ∈ ( har ‘ 𝐴 ) ∧ ( har ‘ 𝐴 ) ∈ 𝐴 ) )
47 43 46 pm2.65i ¬ 𝐴 ∈ V