Metamath Proof Explorer


Theorem cardprclem

Description: Lemma for cardprc . (Contributed by Mario Carneiro, 22-Jan-2013) (Revised by Mario Carneiro, 15-May-2015)

Ref Expression
Hypothesis cardprclem.1 A=x|cardx=x
Assertion cardprclem ¬AV

Proof

Step Hyp Ref Expression
1 cardprclem.1 A=x|cardx=x
2 1 eleq2i xAxx|cardx=x
3 abid xx|cardx=xcardx=x
4 iscard cardx=xxOnyxyx
5 2 3 4 3bitri xAxOnyxyx
6 5 simplbi xAxOn
7 6 ssriv AOn
8 ssonuni AVAOnAOn
9 7 8 mpi AVAOn
10 domrefg AOnAA
11 9 10 syl AVAA
12 elharval AharAAOnAA
13 9 11 12 sylanbrc AVAharA
14 7 sseli zAzOn
15 domrefg zOnzz
16 15 ancli zOnzOnzz
17 elharval zharzzOnzz
18 16 17 sylibr zOnzharz
19 14 18 syl zAzharz
20 harcard cardharz=harz
21 fvex harzV
22 fveq2 x=harzcardx=cardharz
23 id x=harzx=harz
24 22 23 eqeq12d x=harzcardx=xcardharz=harz
25 21 24 1 elab2 harzAcardharz=harz
26 20 25 mpbir harzA
27 eleq2 w=harzzwzharz
28 eleq1 w=harzwAharzA
29 27 28 anbi12d w=harzzwwAzharzharzA
30 21 29 spcev zharzharzAwzwwA
31 19 26 30 sylancl zAwzwwA
32 eluni zAwzwwA
33 31 32 sylibr zAzA
34 33 ssriv AA
35 harcard cardharA=harA
36 fvex harAV
37 fveq2 x=harAcardx=cardharA
38 id x=harAx=harA
39 37 38 eqeq12d x=harAcardx=xcardharA=harA
40 36 39 1 elab2 harAAcardharA=harA
41 35 40 mpbir harAA
42 34 41 sselii harAA
43 13 42 jctir AVAharAharAA
44 eloni AOnOrdA
45 ordn2lp OrdA¬AharAharAA
46 9 44 45 3syl AV¬AharAharAA
47 43 46 pm2.65i ¬AV