Step |
Hyp |
Ref |
Expression |
1 |
|
ccatws1cl |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ∈ Word 𝑉 ) |
2 |
1
|
ad2ant2r |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ∈ Word 𝑉 ) |
3 |
|
simprr |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → 𝑌 ∈ 𝑉 ) |
4 |
|
ccatws1len |
⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ) = ( ( ♯ ‘ 𝑊 ) + 1 ) ) |
5 |
4
|
ad2antrr |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( ♯ ‘ ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ) = ( ( ♯ ‘ 𝑊 ) + 1 ) ) |
6 |
|
oveq1 |
⊢ ( ( ♯ ‘ 𝑊 ) = 𝑁 → ( ( ♯ ‘ 𝑊 ) + 1 ) = ( 𝑁 + 1 ) ) |
7 |
6
|
ad2antlr |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( ( ♯ ‘ 𝑊 ) + 1 ) = ( 𝑁 + 1 ) ) |
8 |
5 7
|
eqtr2d |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( 𝑁 + 1 ) = ( ♯ ‘ ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ) ) |
9 |
|
ccats1val2 |
⊢ ( ( ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ∈ Word 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ ( 𝑁 + 1 ) = ( ♯ ‘ ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ) ) → ( ( ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ++ 〈“ 𝑌 ”〉 ) ‘ ( 𝑁 + 1 ) ) = 𝑌 ) |
10 |
2 3 8 9
|
syl3anc |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( ( ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ++ 〈“ 𝑌 ”〉 ) ‘ ( 𝑁 + 1 ) ) = 𝑌 ) |