Metamath Proof Explorer


Theorem cdleme42ke

Description: Part of proof of Lemma E in Crawley p. 113. Remove R =/= S condition. TODO: FIX COMMENT. (Contributed by NM, 2-Apr-2013)

Ref Expression
Hypotheses cdleme41.b 𝐵 = ( Base ‘ 𝐾 )
cdleme41.l = ( le ‘ 𝐾 )
cdleme41.j = ( join ‘ 𝐾 )
cdleme41.m = ( meet ‘ 𝐾 )
cdleme41.a 𝐴 = ( Atoms ‘ 𝐾 )
cdleme41.h 𝐻 = ( LHyp ‘ 𝐾 )
cdleme41.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
cdleme41.d 𝐷 = ( ( 𝑠 𝑈 ) ( 𝑄 ( ( 𝑃 𝑠 ) 𝑊 ) ) )
cdleme41.e 𝐸 = ( ( 𝑡 𝑈 ) ( 𝑄 ( ( 𝑃 𝑡 ) 𝑊 ) ) )
cdleme41.g 𝐺 = ( ( 𝑃 𝑄 ) ( 𝐸 ( ( 𝑠 𝑡 ) 𝑊 ) ) )
cdleme41.i 𝐼 = ( 𝑦𝐵𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) → 𝑦 = 𝐺 ) )
cdleme41.n 𝑁 = if ( 𝑠 ( 𝑃 𝑄 ) , 𝐼 , 𝐷 )
cdleme41.o 𝑂 = ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑥 𝑊 ) ) = 𝑥 ) → 𝑧 = ( 𝑁 ( 𝑥 𝑊 ) ) ) )
cdleme41.f 𝐹 = ( 𝑥𝐵 ↦ if ( ( 𝑃𝑄 ∧ ¬ 𝑥 𝑊 ) , 𝑂 , 𝑥 ) )
cdleme34e.v 𝑉 = ( ( 𝑅 𝑆 ) 𝑊 )
Assertion cdleme42ke ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ) → ( ( 𝐹𝑅 ) ( 𝐹𝑆 ) ) = ( ( 𝐹𝑅 ) 𝑉 ) )

Proof

Step Hyp Ref Expression
1 cdleme41.b 𝐵 = ( Base ‘ 𝐾 )
2 cdleme41.l = ( le ‘ 𝐾 )
3 cdleme41.j = ( join ‘ 𝐾 )
4 cdleme41.m = ( meet ‘ 𝐾 )
5 cdleme41.a 𝐴 = ( Atoms ‘ 𝐾 )
6 cdleme41.h 𝐻 = ( LHyp ‘ 𝐾 )
7 cdleme41.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
8 cdleme41.d 𝐷 = ( ( 𝑠 𝑈 ) ( 𝑄 ( ( 𝑃 𝑠 ) 𝑊 ) ) )
9 cdleme41.e 𝐸 = ( ( 𝑡 𝑈 ) ( 𝑄 ( ( 𝑃 𝑡 ) 𝑊 ) ) )
10 cdleme41.g 𝐺 = ( ( 𝑃 𝑄 ) ( 𝐸 ( ( 𝑠 𝑡 ) 𝑊 ) ) )
11 cdleme41.i 𝐼 = ( 𝑦𝐵𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) → 𝑦 = 𝐺 ) )
12 cdleme41.n 𝑁 = if ( 𝑠 ( 𝑃 𝑄 ) , 𝐼 , 𝐷 )
13 cdleme41.o 𝑂 = ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑥 𝑊 ) ) = 𝑥 ) → 𝑧 = ( 𝑁 ( 𝑥 𝑊 ) ) ) )
14 cdleme41.f 𝐹 = ( 𝑥𝐵 ↦ if ( ( 𝑃𝑄 ∧ ¬ 𝑥 𝑊 ) , 𝑂 , 𝑥 ) )
15 cdleme34e.v 𝑉 = ( ( 𝑅 𝑆 ) 𝑊 )
16 simpl1l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ) → 𝐾 ∈ HL )
17 simpr2 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ) → ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) )
18 1 2 3 4 5 6 7 8 9 10 11 12 13 14 cdleme32fvaw ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) → ( ( 𝐹𝑅 ) ∈ 𝐴 ∧ ¬ ( 𝐹𝑅 ) 𝑊 ) )
19 17 18 syldan ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ) → ( ( 𝐹𝑅 ) ∈ 𝐴 ∧ ¬ ( 𝐹𝑅 ) 𝑊 ) )
20 19 simpld ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ) → ( 𝐹𝑅 ) ∈ 𝐴 )
21 3 5 hlatjidm ( ( 𝐾 ∈ HL ∧ ( 𝐹𝑅 ) ∈ 𝐴 ) → ( ( 𝐹𝑅 ) ( 𝐹𝑅 ) ) = ( 𝐹𝑅 ) )
22 16 20 21 syl2anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ) → ( ( 𝐹𝑅 ) ( 𝐹𝑅 ) ) = ( 𝐹𝑅 ) )
23 fveq2 ( 𝑅 = 𝑆 → ( 𝐹𝑅 ) = ( 𝐹𝑆 ) )
24 23 oveq2d ( 𝑅 = 𝑆 → ( ( 𝐹𝑅 ) ( 𝐹𝑅 ) ) = ( ( 𝐹𝑅 ) ( 𝐹𝑆 ) ) )
25 22 24 sylan9req ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ) ∧ 𝑅 = 𝑆 ) → ( 𝐹𝑅 ) = ( ( 𝐹𝑅 ) ( 𝐹𝑆 ) ) )
26 simpr2l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ) → 𝑅𝐴 )
27 3 5 hlatjidm ( ( 𝐾 ∈ HL ∧ 𝑅𝐴 ) → ( 𝑅 𝑅 ) = 𝑅 )
28 16 26 27 syl2anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ) → ( 𝑅 𝑅 ) = 𝑅 )
29 28 oveq1d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ) → ( ( 𝑅 𝑅 ) 𝑊 ) = ( 𝑅 𝑊 ) )
30 simpl1 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
31 eqid ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 )
32 2 4 31 5 6 lhpmat ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) → ( 𝑅 𝑊 ) = ( 0. ‘ 𝐾 ) )
33 30 17 32 syl2anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ) → ( 𝑅 𝑊 ) = ( 0. ‘ 𝐾 ) )
34 29 33 eqtrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ) → ( ( 𝑅 𝑅 ) 𝑊 ) = ( 0. ‘ 𝐾 ) )
35 34 oveq2d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ) → ( ( 𝐹𝑅 ) ( ( 𝑅 𝑅 ) 𝑊 ) ) = ( ( 𝐹𝑅 ) ( 0. ‘ 𝐾 ) ) )
36 hlol ( 𝐾 ∈ HL → 𝐾 ∈ OL )
37 16 36 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ) → 𝐾 ∈ OL )
38 1 5 atbase ( ( 𝐹𝑅 ) ∈ 𝐴 → ( 𝐹𝑅 ) ∈ 𝐵 )
39 20 38 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ) → ( 𝐹𝑅 ) ∈ 𝐵 )
40 1 3 31 olj01 ( ( 𝐾 ∈ OL ∧ ( 𝐹𝑅 ) ∈ 𝐵 ) → ( ( 𝐹𝑅 ) ( 0. ‘ 𝐾 ) ) = ( 𝐹𝑅 ) )
41 37 39 40 syl2anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ) → ( ( 𝐹𝑅 ) ( 0. ‘ 𝐾 ) ) = ( 𝐹𝑅 ) )
42 35 41 eqtrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ) → ( ( 𝐹𝑅 ) ( ( 𝑅 𝑅 ) 𝑊 ) ) = ( 𝐹𝑅 ) )
43 oveq2 ( 𝑅 = 𝑆 → ( 𝑅 𝑅 ) = ( 𝑅 𝑆 ) )
44 43 oveq1d ( 𝑅 = 𝑆 → ( ( 𝑅 𝑅 ) 𝑊 ) = ( ( 𝑅 𝑆 ) 𝑊 ) )
45 44 15 eqtr4di ( 𝑅 = 𝑆 → ( ( 𝑅 𝑅 ) 𝑊 ) = 𝑉 )
46 45 oveq2d ( 𝑅 = 𝑆 → ( ( 𝐹𝑅 ) ( ( 𝑅 𝑅 ) 𝑊 ) ) = ( ( 𝐹𝑅 ) 𝑉 ) )
47 42 46 sylan9req ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ) ∧ 𝑅 = 𝑆 ) → ( 𝐹𝑅 ) = ( ( 𝐹𝑅 ) 𝑉 ) )
48 25 47 eqtr3d ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ) ∧ 𝑅 = 𝑆 ) → ( ( 𝐹𝑅 ) ( 𝐹𝑆 ) ) = ( ( 𝐹𝑅 ) 𝑉 ) )
49 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 cdleme42k ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ 𝑅𝑆 ) → ( ( 𝐹𝑅 ) ( 𝐹𝑆 ) ) = ( ( 𝐹𝑅 ) 𝑉 ) )
50 49 3expa ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ) ∧ 𝑅𝑆 ) → ( ( 𝐹𝑅 ) ( 𝐹𝑆 ) ) = ( ( 𝐹𝑅 ) 𝑉 ) )
51 48 50 pm2.61dane ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ) → ( ( 𝐹𝑅 ) ( 𝐹𝑆 ) ) = ( ( 𝐹𝑅 ) 𝑉 ) )