Metamath Proof Explorer


Theorem cdleme48fvg

Description: Remove P =/= Q condition in cdleme48fv . TODO: Can this replace uses of cdleme32a ? TODO: Can this be used to help prove the R or S case where X is an atom? TODO: Can this be proved more directly by eliminating P =/= Q in earlier theorems? Should this replace uses of cdleme48fv ? (Contributed by NM, 23-Apr-2013)

Ref Expression
Hypotheses cdlemef46.b 𝐵 = ( Base ‘ 𝐾 )
cdlemef46.l = ( le ‘ 𝐾 )
cdlemef46.j = ( join ‘ 𝐾 )
cdlemef46.m = ( meet ‘ 𝐾 )
cdlemef46.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemef46.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemef46.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
cdlemef46.d 𝐷 = ( ( 𝑡 𝑈 ) ( 𝑄 ( ( 𝑃 𝑡 ) 𝑊 ) ) )
cdlemefs46.e 𝐸 = ( ( 𝑃 𝑄 ) ( 𝐷 ( ( 𝑠 𝑡 ) 𝑊 ) ) )
cdlemef46.f 𝐹 = ( 𝑥𝐵 ↦ if ( ( 𝑃𝑄 ∧ ¬ 𝑥 𝑊 ) , ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑥 𝑊 ) ) = 𝑥 ) → 𝑧 = ( if ( 𝑠 ( 𝑃 𝑄 ) , ( 𝑦𝐵𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) → 𝑦 = 𝐸 ) ) , 𝑠 / 𝑡 𝐷 ) ( 𝑥 𝑊 ) ) ) ) , 𝑥 ) )
Assertion cdleme48fvg ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑆 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → ( 𝐹𝑋 ) = ( ( 𝐹𝑆 ) ( 𝑋 𝑊 ) ) )

Proof

Step Hyp Ref Expression
1 cdlemef46.b 𝐵 = ( Base ‘ 𝐾 )
2 cdlemef46.l = ( le ‘ 𝐾 )
3 cdlemef46.j = ( join ‘ 𝐾 )
4 cdlemef46.m = ( meet ‘ 𝐾 )
5 cdlemef46.a 𝐴 = ( Atoms ‘ 𝐾 )
6 cdlemef46.h 𝐻 = ( LHyp ‘ 𝐾 )
7 cdlemef46.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
8 cdlemef46.d 𝐷 = ( ( 𝑡 𝑈 ) ( 𝑄 ( ( 𝑃 𝑡 ) 𝑊 ) ) )
9 cdlemefs46.e 𝐸 = ( ( 𝑃 𝑄 ) ( 𝐷 ( ( 𝑠 𝑡 ) 𝑊 ) ) )
10 cdlemef46.f 𝐹 = ( 𝑥𝐵 ↦ if ( ( 𝑃𝑄 ∧ ¬ 𝑥 𝑊 ) , ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑥 𝑊 ) ) = 𝑥 ) → 𝑧 = ( if ( 𝑠 ( 𝑃 𝑄 ) , ( 𝑦𝐵𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) → 𝑦 = 𝐸 ) ) , 𝑠 / 𝑡 𝐷 ) ( 𝑥 𝑊 ) ) ) ) , 𝑥 ) )
11 simpl3r ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑆 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ 𝑃 = 𝑄 ) → ( 𝑆 ( 𝑋 𝑊 ) ) = 𝑋 )
12 simp3ll ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑆 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → 𝑆𝐴 )
13 12 adantr ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑆 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ 𝑃 = 𝑄 ) → 𝑆𝐴 )
14 1 5 atbase ( 𝑆𝐴𝑆𝐵 )
15 13 14 syl ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑆 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ 𝑃 = 𝑄 ) → 𝑆𝐵 )
16 10 cdleme31id ( ( 𝑆𝐵𝑃 = 𝑄 ) → ( 𝐹𝑆 ) = 𝑆 )
17 15 16 sylancom ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑆 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ 𝑃 = 𝑄 ) → ( 𝐹𝑆 ) = 𝑆 )
18 17 oveq1d ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑆 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ 𝑃 = 𝑄 ) → ( ( 𝐹𝑆 ) ( 𝑋 𝑊 ) ) = ( 𝑆 ( 𝑋 𝑊 ) ) )
19 simp2l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑆 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → 𝑋𝐵 )
20 10 cdleme31id ( ( 𝑋𝐵𝑃 = 𝑄 ) → ( 𝐹𝑋 ) = 𝑋 )
21 19 20 sylan ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑆 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ 𝑃 = 𝑄 ) → ( 𝐹𝑋 ) = 𝑋 )
22 11 18 21 3eqtr4rd ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑆 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ 𝑃 = 𝑄 ) → ( 𝐹𝑋 ) = ( ( 𝐹𝑆 ) ( 𝑋 𝑊 ) ) )
23 simpl1 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑆 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ 𝑃𝑄 ) → ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) )
24 simpr ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑆 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ 𝑃𝑄 ) → 𝑃𝑄 )
25 simpl2 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑆 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ 𝑃𝑄 ) → ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) )
26 simpl3 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑆 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ 𝑃𝑄 ) → ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑆 ( 𝑋 𝑊 ) ) = 𝑋 ) )
27 1 2 3 4 5 6 7 8 9 10 cdleme48fv ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑆 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → ( 𝐹𝑋 ) = ( ( 𝐹𝑆 ) ( 𝑋 𝑊 ) ) )
28 23 24 25 26 27 syl121anc ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑆 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ∧ 𝑃𝑄 ) → ( 𝐹𝑋 ) = ( ( 𝐹𝑆 ) ( 𝑋 𝑊 ) ) )
29 22 28 pm2.61dane ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑆 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → ( 𝐹𝑋 ) = ( ( 𝐹𝑆 ) ( 𝑋 𝑊 ) ) )