Metamath Proof Explorer


Theorem cdleme48fvg

Description: Remove P =/= Q condition in cdleme48fv . TODO: Can this replace uses of cdleme32a ? TODO: Can this be used to help prove the R or S case where X is an atom? TODO: Can this be proved more directly by eliminating P =/= Q in earlier theorems? Should this replace uses of cdleme48fv ? (Contributed by NM, 23-Apr-2013)

Ref Expression
Hypotheses cdlemef46.b B=BaseK
cdlemef46.l ˙=K
cdlemef46.j ˙=joinK
cdlemef46.m ˙=meetK
cdlemef46.a A=AtomsK
cdlemef46.h H=LHypK
cdlemef46.u U=P˙Q˙W
cdlemef46.d D=t˙U˙Q˙P˙t˙W
cdlemefs46.e E=P˙Q˙D˙s˙t˙W
cdlemef46.f F=xBifPQ¬x˙WιzB|sA¬s˙Ws˙x˙W=xz=ifs˙P˙QιyB|tA¬t˙W¬t˙P˙Qy=Es/tD˙x˙Wx
Assertion cdleme48fvg KHLWHPA¬P˙WQA¬Q˙WXB¬X˙WSA¬S˙WS˙X˙W=XFX=FS˙X˙W

Proof

Step Hyp Ref Expression
1 cdlemef46.b B=BaseK
2 cdlemef46.l ˙=K
3 cdlemef46.j ˙=joinK
4 cdlemef46.m ˙=meetK
5 cdlemef46.a A=AtomsK
6 cdlemef46.h H=LHypK
7 cdlemef46.u U=P˙Q˙W
8 cdlemef46.d D=t˙U˙Q˙P˙t˙W
9 cdlemefs46.e E=P˙Q˙D˙s˙t˙W
10 cdlemef46.f F=xBifPQ¬x˙WιzB|sA¬s˙Ws˙x˙W=xz=ifs˙P˙QιyB|tA¬t˙W¬t˙P˙Qy=Es/tD˙x˙Wx
11 simpl3r KHLWHPA¬P˙WQA¬Q˙WXB¬X˙WSA¬S˙WS˙X˙W=XP=QS˙X˙W=X
12 simp3ll KHLWHPA¬P˙WQA¬Q˙WXB¬X˙WSA¬S˙WS˙X˙W=XSA
13 12 adantr KHLWHPA¬P˙WQA¬Q˙WXB¬X˙WSA¬S˙WS˙X˙W=XP=QSA
14 1 5 atbase SASB
15 13 14 syl KHLWHPA¬P˙WQA¬Q˙WXB¬X˙WSA¬S˙WS˙X˙W=XP=QSB
16 10 cdleme31id SBP=QFS=S
17 15 16 sylancom KHLWHPA¬P˙WQA¬Q˙WXB¬X˙WSA¬S˙WS˙X˙W=XP=QFS=S
18 17 oveq1d KHLWHPA¬P˙WQA¬Q˙WXB¬X˙WSA¬S˙WS˙X˙W=XP=QFS˙X˙W=S˙X˙W
19 simp2l KHLWHPA¬P˙WQA¬Q˙WXB¬X˙WSA¬S˙WS˙X˙W=XXB
20 10 cdleme31id XBP=QFX=X
21 19 20 sylan KHLWHPA¬P˙WQA¬Q˙WXB¬X˙WSA¬S˙WS˙X˙W=XP=QFX=X
22 11 18 21 3eqtr4rd KHLWHPA¬P˙WQA¬Q˙WXB¬X˙WSA¬S˙WS˙X˙W=XP=QFX=FS˙X˙W
23 simpl1 KHLWHPA¬P˙WQA¬Q˙WXB¬X˙WSA¬S˙WS˙X˙W=XPQKHLWHPA¬P˙WQA¬Q˙W
24 simpr KHLWHPA¬P˙WQA¬Q˙WXB¬X˙WSA¬S˙WS˙X˙W=XPQPQ
25 simpl2 KHLWHPA¬P˙WQA¬Q˙WXB¬X˙WSA¬S˙WS˙X˙W=XPQXB¬X˙W
26 simpl3 KHLWHPA¬P˙WQA¬Q˙WXB¬X˙WSA¬S˙WS˙X˙W=XPQSA¬S˙WS˙X˙W=X
27 1 2 3 4 5 6 7 8 9 10 cdleme48fv KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WSA¬S˙WS˙X˙W=XFX=FS˙X˙W
28 23 24 25 26 27 syl121anc KHLWHPA¬P˙WQA¬Q˙WXB¬X˙WSA¬S˙WS˙X˙W=XPQFX=FS˙X˙W
29 22 28 pm2.61dane KHLWHPA¬P˙WQA¬Q˙WXB¬X˙WSA¬S˙WS˙X˙W=XFX=FS˙X˙W