| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdlemg8.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 2 |  | cdlemg8.j | ⊢  ∨   =  ( join ‘ 𝐾 ) | 
						
							| 3 |  | cdlemg8.m | ⊢  ∧   =  ( meet ‘ 𝐾 ) | 
						
							| 4 |  | cdlemg8.a | ⊢ 𝐴  =  ( Atoms ‘ 𝐾 ) | 
						
							| 5 |  | cdlemg8.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 6 |  | cdlemg8.t | ⊢ 𝑇  =  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 7 |  | simp11 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  →  𝐾  ∈  HL ) | 
						
							| 8 |  | simp12 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  →  𝑊  ∈  𝐻 ) | 
						
							| 9 | 7 8 | jca | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 10 |  | 3simpc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  →  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) ) ) | 
						
							| 11 |  | simp13 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  →  𝐹  ∈  𝑇 ) | 
						
							| 12 |  | eqid | ⊢ ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  =  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) | 
						
							| 13 | 5 6 1 2 4 3 12 | cdlemg2k | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  𝐹  ∈  𝑇 )  →  ( ( 𝐹 ‘ 𝑃 )  ∨  ( 𝐹 ‘ 𝑄 ) )  =  ( ( 𝐹 ‘ 𝑃 )  ∨  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) ) ) | 
						
							| 14 | 9 10 11 13 | syl3anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  →  ( ( 𝐹 ‘ 𝑃 )  ∨  ( 𝐹 ‘ 𝑄 ) )  =  ( ( 𝐹 ‘ 𝑃 )  ∨  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) ) ) | 
						
							| 15 | 14 | oveq1d | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  →  ( ( ( 𝐹 ‘ 𝑃 )  ∨  ( 𝐹 ‘ 𝑄 ) )  ∧  𝑊 )  =  ( ( ( 𝐹 ‘ 𝑃 )  ∨  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) )  ∧  𝑊 ) ) | 
						
							| 16 |  | simp2 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  →  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 ) ) | 
						
							| 17 | 1 4 5 6 | ltrnel | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 ) )  →  ( ( 𝐹 ‘ 𝑃 )  ∈  𝐴  ∧  ¬  ( 𝐹 ‘ 𝑃 )  ≤  𝑊 ) ) | 
						
							| 18 | 9 11 16 17 | syl3anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  →  ( ( 𝐹 ‘ 𝑃 )  ∈  𝐴  ∧  ¬  ( 𝐹 ‘ 𝑃 )  ≤  𝑊 ) ) | 
						
							| 19 |  | eqid | ⊢ ( 0. ‘ 𝐾 )  =  ( 0. ‘ 𝐾 ) | 
						
							| 20 | 1 3 19 4 5 | lhpmat | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  𝐴  ∧  ¬  ( 𝐹 ‘ 𝑃 )  ≤  𝑊 ) )  →  ( ( 𝐹 ‘ 𝑃 )  ∧  𝑊 )  =  ( 0. ‘ 𝐾 ) ) | 
						
							| 21 | 9 18 20 | syl2anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  →  ( ( 𝐹 ‘ 𝑃 )  ∧  𝑊 )  =  ( 0. ‘ 𝐾 ) ) | 
						
							| 22 | 21 | oveq1d | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  →  ( ( ( 𝐹 ‘ 𝑃 )  ∧  𝑊 )  ∨  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) )  =  ( ( 0. ‘ 𝐾 )  ∨  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) ) ) | 
						
							| 23 |  | simp2l | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  →  𝑃  ∈  𝐴 ) | 
						
							| 24 | 1 4 5 6 | ltrnat | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇  ∧  𝑃  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑃 )  ∈  𝐴 ) | 
						
							| 25 | 9 11 23 24 | syl3anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  →  ( 𝐹 ‘ 𝑃 )  ∈  𝐴 ) | 
						
							| 26 | 7 | hllatd | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  →  𝐾  ∈  Lat ) | 
						
							| 27 |  | simp3l | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  →  𝑄  ∈  𝐴 ) | 
						
							| 28 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 29 | 28 2 4 | hlatjcl | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  →  ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 30 | 7 23 27 29 | syl3anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  →  ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 31 | 28 5 | lhpbase | ⊢ ( 𝑊  ∈  𝐻  →  𝑊  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 32 | 8 31 | syl | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  →  𝑊  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 33 | 28 3 | latmcl | ⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 )  ∧  𝑊  ∈  ( Base ‘ 𝐾 ) )  →  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 34 | 26 30 32 33 | syl3anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  →  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 35 | 28 1 3 | latmle2 | ⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 )  ∧  𝑊  ∈  ( Base ‘ 𝐾 ) )  →  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  ≤  𝑊 ) | 
						
							| 36 | 26 30 32 35 | syl3anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  →  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  ≤  𝑊 ) | 
						
							| 37 | 28 1 2 3 4 | atmod4i2 | ⊢ ( ( 𝐾  ∈  HL  ∧  ( ( 𝐹 ‘ 𝑃 )  ∈  𝐴  ∧  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  ∈  ( Base ‘ 𝐾 )  ∧  𝑊  ∈  ( Base ‘ 𝐾 ) )  ∧  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  ≤  𝑊 )  →  ( ( ( 𝐹 ‘ 𝑃 )  ∧  𝑊 )  ∨  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) )  =  ( ( ( 𝐹 ‘ 𝑃 )  ∨  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) )  ∧  𝑊 ) ) | 
						
							| 38 | 7 25 34 32 36 37 | syl131anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  →  ( ( ( 𝐹 ‘ 𝑃 )  ∧  𝑊 )  ∨  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) )  =  ( ( ( 𝐹 ‘ 𝑃 )  ∨  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) )  ∧  𝑊 ) ) | 
						
							| 39 |  | hlol | ⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  OL ) | 
						
							| 40 | 7 39 | syl | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  →  𝐾  ∈  OL ) | 
						
							| 41 | 28 2 19 | olj02 | ⊢ ( ( 𝐾  ∈  OL  ∧  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  ∈  ( Base ‘ 𝐾 ) )  →  ( ( 0. ‘ 𝐾 )  ∨  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) )  =  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) ) | 
						
							| 42 | 40 34 41 | syl2anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  →  ( ( 0. ‘ 𝐾 )  ∨  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) )  =  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) ) | 
						
							| 43 | 22 38 42 | 3eqtr3d | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  →  ( ( ( 𝐹 ‘ 𝑃 )  ∨  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) )  ∧  𝑊 )  =  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) ) | 
						
							| 44 | 15 43 | eqtrd | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻  ∧  𝐹  ∈  𝑇 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  →  ( ( ( 𝐹 ‘ 𝑃 )  ∨  ( 𝐹 ‘ 𝑄 ) )  ∧  𝑊 )  =  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) ) |