Metamath Proof Explorer


Theorem cdlemg10bALTN

Description: TODO: FIX COMMENT. TODO: Can this be moved up as a stand-alone theorem in ltrn* area? TODO: Compare this proof to cdlemg2m and pick best, if moved to ltrn* area. (Contributed by NM, 4-May-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdlemg8.l = ( le ‘ 𝐾 )
cdlemg8.j = ( join ‘ 𝐾 )
cdlemg8.m = ( meet ‘ 𝐾 )
cdlemg8.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemg8.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemg8.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
Assertion cdlemg10bALTN ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( ( ( 𝐹𝑃 ) ( 𝐹𝑄 ) ) 𝑊 ) = ( ( 𝑃 𝑄 ) 𝑊 ) )

Proof

Step Hyp Ref Expression
1 cdlemg8.l = ( le ‘ 𝐾 )
2 cdlemg8.j = ( join ‘ 𝐾 )
3 cdlemg8.m = ( meet ‘ 𝐾 )
4 cdlemg8.a 𝐴 = ( Atoms ‘ 𝐾 )
5 cdlemg8.h 𝐻 = ( LHyp ‘ 𝐾 )
6 cdlemg8.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
7 simp11 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → 𝐾 ∈ HL )
8 simp12 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → 𝑊𝐻 )
9 7 8 jca ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
10 3simpc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) )
11 simp13 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → 𝐹𝑇 )
12 eqid ( ( 𝑃 𝑄 ) 𝑊 ) = ( ( 𝑃 𝑄 ) 𝑊 )
13 5 6 1 2 4 3 12 cdlemg2k ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝐹𝑇 ) → ( ( 𝐹𝑃 ) ( 𝐹𝑄 ) ) = ( ( 𝐹𝑃 ) ( ( 𝑃 𝑄 ) 𝑊 ) ) )
14 9 10 11 13 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( ( 𝐹𝑃 ) ( 𝐹𝑄 ) ) = ( ( 𝐹𝑃 ) ( ( 𝑃 𝑄 ) 𝑊 ) ) )
15 14 oveq1d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( ( ( 𝐹𝑃 ) ( 𝐹𝑄 ) ) 𝑊 ) = ( ( ( 𝐹𝑃 ) ( ( 𝑃 𝑄 ) 𝑊 ) ) 𝑊 ) )
16 simp2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
17 1 4 5 6 ltrnel ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( ( 𝐹𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐹𝑃 ) 𝑊 ) )
18 9 11 16 17 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( ( 𝐹𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐹𝑃 ) 𝑊 ) )
19 eqid ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 )
20 1 3 19 4 5 lhpmat ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝐹𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐹𝑃 ) 𝑊 ) ) → ( ( 𝐹𝑃 ) 𝑊 ) = ( 0. ‘ 𝐾 ) )
21 9 18 20 syl2anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( ( 𝐹𝑃 ) 𝑊 ) = ( 0. ‘ 𝐾 ) )
22 21 oveq1d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( ( ( 𝐹𝑃 ) 𝑊 ) ( ( 𝑃 𝑄 ) 𝑊 ) ) = ( ( 0. ‘ 𝐾 ) ( ( 𝑃 𝑄 ) 𝑊 ) ) )
23 simp2l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → 𝑃𝐴 )
24 1 4 5 6 ltrnat ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝑃𝐴 ) → ( 𝐹𝑃 ) ∈ 𝐴 )
25 9 11 23 24 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( 𝐹𝑃 ) ∈ 𝐴 )
26 7 hllatd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → 𝐾 ∈ Lat )
27 simp3l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → 𝑄𝐴 )
28 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
29 28 2 4 hlatjcl ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) → ( 𝑃 𝑄 ) ∈ ( Base ‘ 𝐾 ) )
30 7 23 27 29 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( 𝑃 𝑄 ) ∈ ( Base ‘ 𝐾 ) )
31 28 5 lhpbase ( 𝑊𝐻𝑊 ∈ ( Base ‘ 𝐾 ) )
32 8 31 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → 𝑊 ∈ ( Base ‘ 𝐾 ) )
33 28 3 latmcl ( ( 𝐾 ∈ Lat ∧ ( 𝑃 𝑄 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 𝑄 ) 𝑊 ) ∈ ( Base ‘ 𝐾 ) )
34 26 30 32 33 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( ( 𝑃 𝑄 ) 𝑊 ) ∈ ( Base ‘ 𝐾 ) )
35 28 1 3 latmle2 ( ( 𝐾 ∈ Lat ∧ ( 𝑃 𝑄 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 𝑄 ) 𝑊 ) 𝑊 )
36 26 30 32 35 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( ( 𝑃 𝑄 ) 𝑊 ) 𝑊 )
37 28 1 2 3 4 atmod4i2 ( ( 𝐾 ∈ HL ∧ ( ( 𝐹𝑃 ) ∈ 𝐴 ∧ ( ( 𝑃 𝑄 ) 𝑊 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) ∧ ( ( 𝑃 𝑄 ) 𝑊 ) 𝑊 ) → ( ( ( 𝐹𝑃 ) 𝑊 ) ( ( 𝑃 𝑄 ) 𝑊 ) ) = ( ( ( 𝐹𝑃 ) ( ( 𝑃 𝑄 ) 𝑊 ) ) 𝑊 ) )
38 7 25 34 32 36 37 syl131anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( ( ( 𝐹𝑃 ) 𝑊 ) ( ( 𝑃 𝑄 ) 𝑊 ) ) = ( ( ( 𝐹𝑃 ) ( ( 𝑃 𝑄 ) 𝑊 ) ) 𝑊 ) )
39 hlol ( 𝐾 ∈ HL → 𝐾 ∈ OL )
40 7 39 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → 𝐾 ∈ OL )
41 28 2 19 olj02 ( ( 𝐾 ∈ OL ∧ ( ( 𝑃 𝑄 ) 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 0. ‘ 𝐾 ) ( ( 𝑃 𝑄 ) 𝑊 ) ) = ( ( 𝑃 𝑄 ) 𝑊 ) )
42 40 34 41 syl2anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( ( 0. ‘ 𝐾 ) ( ( 𝑃 𝑄 ) 𝑊 ) ) = ( ( 𝑃 𝑄 ) 𝑊 ) )
43 22 38 42 3eqtr3d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( ( ( 𝐹𝑃 ) ( ( 𝑃 𝑄 ) 𝑊 ) ) 𝑊 ) = ( ( 𝑃 𝑄 ) 𝑊 ) )
44 15 43 eqtrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻𝐹𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( ( ( 𝐹𝑃 ) ( 𝐹𝑄 ) ) 𝑊 ) = ( ( 𝑃 𝑄 ) 𝑊 ) )