Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg12.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
cdlemg12.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
cdlemg12.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
4 |
|
cdlemg12.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
cdlemg12.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
6 |
|
cdlemg12.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
cdlemg12b.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
1 2 3 4 5 6 7
|
cdlemg17e |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝐹 ‘ 𝑄 ) ) = ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝑅 ‘ 𝐺 ) ) ) |
9 |
|
simp11 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
10 |
|
simp22 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → 𝐺 ∈ 𝑇 ) |
11 |
|
simp21 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → 𝐹 ∈ 𝑇 ) |
12 |
|
simp12 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
13 |
1 4 5 6
|
ltrnel |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑃 ) ≤ 𝑊 ) ) |
14 |
9 11 12 13
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → ( ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑃 ) ≤ 𝑊 ) ) |
15 |
1 2 3 4 5 6 7
|
trlval2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐺 ∈ 𝑇 ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑃 ) ≤ 𝑊 ) ) → ( 𝑅 ‘ 𝐺 ) = ( ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝐺 ‘ ( 𝐹 ‘ 𝑃 ) ) ) ∧ 𝑊 ) ) |
16 |
9 10 14 15
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → ( 𝑅 ‘ 𝐺 ) = ( ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝐺 ‘ ( 𝐹 ‘ 𝑃 ) ) ) ∧ 𝑊 ) ) |
17 |
16
|
oveq2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝑅 ‘ 𝐺 ) ) = ( ( 𝐹 ‘ 𝑃 ) ∨ ( ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝐺 ‘ ( 𝐹 ‘ 𝑃 ) ) ) ∧ 𝑊 ) ) ) |
18 |
|
simp12l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → 𝑃 ∈ 𝐴 ) |
19 |
1 4 5 6
|
ltrncoat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐹 ∈ 𝑇 ) ∧ 𝑃 ∈ 𝐴 ) → ( 𝐺 ‘ ( 𝐹 ‘ 𝑃 ) ) ∈ 𝐴 ) |
20 |
9 10 11 18 19
|
syl121anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → ( 𝐺 ‘ ( 𝐹 ‘ 𝑃 ) ) ∈ 𝐴 ) |
21 |
|
eqid |
⊢ ( ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝐺 ‘ ( 𝐹 ‘ 𝑃 ) ) ) ∧ 𝑊 ) = ( ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝐺 ‘ ( 𝐹 ‘ 𝑃 ) ) ) ∧ 𝑊 ) |
22 |
1 2 3 4 5 21
|
cdleme0cp |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑃 ) ≤ 𝑊 ) ∧ ( 𝐺 ‘ ( 𝐹 ‘ 𝑃 ) ) ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑃 ) ∨ ( ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝐺 ‘ ( 𝐹 ‘ 𝑃 ) ) ) ∧ 𝑊 ) ) = ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝐺 ‘ ( 𝐹 ‘ 𝑃 ) ) ) ) |
23 |
9 14 20 22
|
syl12anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → ( ( 𝐹 ‘ 𝑃 ) ∨ ( ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝐺 ‘ ( 𝐹 ‘ 𝑃 ) ) ) ∧ 𝑊 ) ) = ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝐺 ‘ ( 𝐹 ‘ 𝑃 ) ) ) ) |
24 |
8 17 23
|
3eqtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝐹 ‘ 𝑄 ) ) = ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝐺 ‘ ( 𝐹 ‘ 𝑃 ) ) ) ) |