Metamath Proof Explorer


Theorem cdlemg17g

Description: TODO: fix comment. (Contributed by NM, 9-May-2013)

Ref Expression
Hypotheses cdlemg12.l = ( le ‘ 𝐾 )
cdlemg12.j = ( join ‘ 𝐾 )
cdlemg12.m = ( meet ‘ 𝐾 )
cdlemg12.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemg12.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemg12.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
cdlemg12b.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
Assertion cdlemg17g ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ∧ ( ( 𝐺𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( 𝐺 ‘ ( 𝐹𝑃 ) ) ( ( 𝐹𝑃 ) ( 𝐹𝑄 ) ) )

Proof

Step Hyp Ref Expression
1 cdlemg12.l = ( le ‘ 𝐾 )
2 cdlemg12.j = ( join ‘ 𝐾 )
3 cdlemg12.m = ( meet ‘ 𝐾 )
4 cdlemg12.a 𝐴 = ( Atoms ‘ 𝐾 )
5 cdlemg12.h 𝐻 = ( LHyp ‘ 𝐾 )
6 cdlemg12.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
7 cdlemg12b.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
8 simp11l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ∧ ( ( 𝐺𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → 𝐾 ∈ HL )
9 simp11 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ∧ ( ( 𝐺𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
10 simp21 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ∧ ( ( 𝐺𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → 𝐹𝑇 )
11 simp12l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ∧ ( ( 𝐺𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → 𝑃𝐴 )
12 1 4 5 6 ltrnat ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝑃𝐴 ) → ( 𝐹𝑃 ) ∈ 𝐴 )
13 9 10 11 12 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ∧ ( ( 𝐺𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( 𝐹𝑃 ) ∈ 𝐴 )
14 simp22 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ∧ ( ( 𝐺𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → 𝐺𝑇 )
15 1 4 5 6 ltrncoat ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐺𝑇𝐹𝑇 ) ∧ 𝑃𝐴 ) → ( 𝐺 ‘ ( 𝐹𝑃 ) ) ∈ 𝐴 )
16 9 14 10 11 15 syl121anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ∧ ( ( 𝐺𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( 𝐺 ‘ ( 𝐹𝑃 ) ) ∈ 𝐴 )
17 1 2 4 hlatlej2 ( ( 𝐾 ∈ HL ∧ ( 𝐹𝑃 ) ∈ 𝐴 ∧ ( 𝐺 ‘ ( 𝐹𝑃 ) ) ∈ 𝐴 ) → ( 𝐺 ‘ ( 𝐹𝑃 ) ) ( ( 𝐹𝑃 ) ( 𝐺 ‘ ( 𝐹𝑃 ) ) ) )
18 8 13 16 17 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ∧ ( ( 𝐺𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( 𝐺 ‘ ( 𝐹𝑃 ) ) ( ( 𝐹𝑃 ) ( 𝐺 ‘ ( 𝐹𝑃 ) ) ) )
19 1 2 3 4 5 6 7 cdlemg17f ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ∧ ( ( 𝐺𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( ( 𝐹𝑃 ) ( 𝐹𝑄 ) ) = ( ( 𝐹𝑃 ) ( 𝐺 ‘ ( 𝐹𝑃 ) ) ) )
20 18 19 breqtrrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇𝑃𝑄 ) ∧ ( ( 𝐺𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( 𝐺 ‘ ( 𝐹𝑃 ) ) ( ( 𝐹𝑃 ) ( 𝐹𝑄 ) ) )