Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemk.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
cdlemk.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
cdlemk.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
cdlemk.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
cdlemk.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
6 |
|
cdlemk.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
cdlemk.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
cdlemk.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
9 |
|
cdlemk.v1 |
⊢ 𝑉 = ( ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝑋 ‘ 𝑃 ) ) ∧ ( ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ∨ ( 𝑅 ‘ ( 𝑋 ∘ ◡ 𝐹 ) ) ) ) |
10 |
|
simp1l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ 𝑃 ∈ 𝐴 ) → 𝐾 ∈ HL ) |
11 |
10
|
hllatd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ 𝑃 ∈ 𝐴 ) → 𝐾 ∈ Lat ) |
12 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ 𝑃 ∈ 𝐴 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
13 |
|
simp22 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ 𝑃 ∈ 𝐴 ) → 𝐺 ∈ 𝑇 ) |
14 |
1 4
|
atbase |
⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵 ) |
15 |
14
|
3ad2ant3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ 𝑃 ∈ 𝐴 ) → 𝑃 ∈ 𝐵 ) |
16 |
1 5 6
|
ltrncl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵 ) → ( 𝐺 ‘ 𝑃 ) ∈ 𝐵 ) |
17 |
12 13 15 16
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ 𝑃 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑃 ) ∈ 𝐵 ) |
18 |
|
simp23 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ 𝑃 ∈ 𝐴 ) → 𝑋 ∈ 𝑇 ) |
19 |
1 5 6
|
ltrncl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵 ) → ( 𝑋 ‘ 𝑃 ) ∈ 𝐵 ) |
20 |
12 18 15 19
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ 𝑃 ∈ 𝐴 ) → ( 𝑋 ‘ 𝑃 ) ∈ 𝐵 ) |
21 |
1 3
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝐺 ‘ 𝑃 ) ∈ 𝐵 ∧ ( 𝑋 ‘ 𝑃 ) ∈ 𝐵 ) → ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝑋 ‘ 𝑃 ) ) ∈ 𝐵 ) |
22 |
11 17 20 21
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ 𝑃 ∈ 𝐴 ) → ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝑋 ‘ 𝑃 ) ) ∈ 𝐵 ) |
23 |
|
simp21 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ 𝑃 ∈ 𝐴 ) → 𝐹 ∈ 𝑇 ) |
24 |
5 6
|
ltrncnv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ) → ◡ 𝐹 ∈ 𝑇 ) |
25 |
12 23 24
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ 𝑃 ∈ 𝐴 ) → ◡ 𝐹 ∈ 𝑇 ) |
26 |
5 6
|
ltrnco |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐺 ∈ 𝑇 ∧ ◡ 𝐹 ∈ 𝑇 ) → ( 𝐺 ∘ ◡ 𝐹 ) ∈ 𝑇 ) |
27 |
12 13 25 26
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ 𝑃 ∈ 𝐴 ) → ( 𝐺 ∘ ◡ 𝐹 ) ∈ 𝑇 ) |
28 |
1 5 6 7
|
trlcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐺 ∘ ◡ 𝐹 ) ∈ 𝑇 ) → ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ∈ 𝐵 ) |
29 |
12 27 28
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ 𝑃 ∈ 𝐴 ) → ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ∈ 𝐵 ) |
30 |
5 6
|
ltrnco |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑇 ∧ ◡ 𝐹 ∈ 𝑇 ) → ( 𝑋 ∘ ◡ 𝐹 ) ∈ 𝑇 ) |
31 |
12 18 25 30
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ 𝑃 ∈ 𝐴 ) → ( 𝑋 ∘ ◡ 𝐹 ) ∈ 𝑇 ) |
32 |
1 5 6 7
|
trlcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∘ ◡ 𝐹 ) ∈ 𝑇 ) → ( 𝑅 ‘ ( 𝑋 ∘ ◡ 𝐹 ) ) ∈ 𝐵 ) |
33 |
12 31 32
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ 𝑃 ∈ 𝐴 ) → ( 𝑅 ‘ ( 𝑋 ∘ ◡ 𝐹 ) ) ∈ 𝐵 ) |
34 |
1 3
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ∈ 𝐵 ∧ ( 𝑅 ‘ ( 𝑋 ∘ ◡ 𝐹 ) ) ∈ 𝐵 ) → ( ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ∨ ( 𝑅 ‘ ( 𝑋 ∘ ◡ 𝐹 ) ) ) ∈ 𝐵 ) |
35 |
11 29 33 34
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ 𝑃 ∈ 𝐴 ) → ( ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ∨ ( 𝑅 ‘ ( 𝑋 ∘ ◡ 𝐹 ) ) ) ∈ 𝐵 ) |
36 |
1 8
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝑋 ‘ 𝑃 ) ) ∈ 𝐵 ∧ ( ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ∨ ( 𝑅 ‘ ( 𝑋 ∘ ◡ 𝐹 ) ) ) ∈ 𝐵 ) → ( ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝑋 ‘ 𝑃 ) ) ∧ ( ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ∨ ( 𝑅 ‘ ( 𝑋 ∘ ◡ 𝐹 ) ) ) ) ∈ 𝐵 ) |
37 |
11 22 35 36
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ 𝑃 ∈ 𝐴 ) → ( ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝑋 ‘ 𝑃 ) ) ∧ ( ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ∨ ( 𝑅 ‘ ( 𝑋 ∘ ◡ 𝐹 ) ) ) ) ∈ 𝐵 ) |
38 |
9 37
|
eqeltrid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ 𝑃 ∈ 𝐴 ) → 𝑉 ∈ 𝐵 ) |