Metamath Proof Explorer


Theorem cfilucfil3

Description: Given a metric D and a uniform structure generated by that metric, Cauchy filter bases on that uniform structure are exactly the Cauchy filters for the metric. (Contributed by Thierry Arnoux, 15-Dec-2017) (Revised by Thierry Arnoux, 11-Feb-2018)

Ref Expression
Assertion cfilucfil3 ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) → ( ( 𝐶 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐶 ∈ ( CauFilu ‘ ( metUnif ‘ 𝐷 ) ) ) ↔ 𝐶 ∈ ( CauFil ‘ 𝐷 ) ) )

Proof

Step Hyp Ref Expression
1 xmetpsmet ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐷 ∈ ( PsMet ‘ 𝑋 ) )
2 cfilucfil2 ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ( 𝐶 ∈ ( CauFilu ‘ ( metUnif ‘ 𝐷 ) ) ↔ ( 𝐶 ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+𝑦𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) )
3 2 anbi2d ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ( ( 𝐶 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐶 ∈ ( CauFilu ‘ ( metUnif ‘ 𝐷 ) ) ) ↔ ( 𝐶 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐶 ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+𝑦𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) ) )
4 filfbas ( 𝐶 ∈ ( Fil ‘ 𝑋 ) → 𝐶 ∈ ( fBas ‘ 𝑋 ) )
5 4 pm4.71i ( 𝐶 ∈ ( Fil ‘ 𝑋 ) ↔ ( 𝐶 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐶 ∈ ( fBas ‘ 𝑋 ) ) )
6 5 anbi1i ( ( 𝐶 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+𝑦𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ↔ ( ( 𝐶 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐶 ∈ ( fBas ‘ 𝑋 ) ) ∧ ∀ 𝑥 ∈ ℝ+𝑦𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) )
7 anass ( ( ( 𝐶 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐶 ∈ ( fBas ‘ 𝑋 ) ) ∧ ∀ 𝑥 ∈ ℝ+𝑦𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ↔ ( 𝐶 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐶 ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+𝑦𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) )
8 6 7 bitr2i ( ( 𝐶 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐶 ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+𝑦𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) ↔ ( 𝐶 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+𝑦𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) )
9 3 8 bitrdi ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ( ( 𝐶 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐶 ∈ ( CauFilu ‘ ( metUnif ‘ 𝐷 ) ) ) ↔ ( 𝐶 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+𝑦𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) )
10 1 9 sylan2 ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) → ( ( 𝐶 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐶 ∈ ( CauFilu ‘ ( metUnif ‘ 𝐷 ) ) ) ↔ ( 𝐶 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+𝑦𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) )
11 iscfil ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐶 ∈ ( CauFil ‘ 𝐷 ) ↔ ( 𝐶 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+𝑦𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) )
12 11 adantl ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) → ( 𝐶 ∈ ( CauFil ‘ 𝐷 ) ↔ ( 𝐶 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+𝑦𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) )
13 10 12 bitr4d ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) → ( ( 𝐶 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐶 ∈ ( CauFilu ‘ ( metUnif ‘ 𝐷 ) ) ) ↔ 𝐶 ∈ ( CauFil ‘ 𝐷 ) ) )