| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clwlkclwwlkf.c | ⊢ 𝐶  =  { 𝑤  ∈  ( ClWalks ‘ 𝐺 )  ∣  1  ≤  ( ♯ ‘ ( 1st  ‘ 𝑤 ) ) } | 
						
							| 2 |  | simp3 | ⊢ ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  1  ≤  ( ♯ ‘ 𝑊 )  ∧  〈 𝑓 ,  ( 𝑊  ++  〈“ ( 𝑊 ‘ 0 ) ”〉 ) 〉  ∈  ( ClWalks ‘ 𝐺 ) )  →  〈 𝑓 ,  ( 𝑊  ++  〈“ ( 𝑊 ‘ 0 ) ”〉 ) 〉  ∈  ( ClWalks ‘ 𝐺 ) ) | 
						
							| 3 |  | wrdlenccats1lenm1 | ⊢ ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  →  ( ( ♯ ‘ ( 𝑊  ++  〈“ ( 𝑊 ‘ 0 ) ”〉 ) )  −  1 )  =  ( ♯ ‘ 𝑊 ) ) | 
						
							| 4 | 3 | eqcomd | ⊢ ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  →  ( ♯ ‘ 𝑊 )  =  ( ( ♯ ‘ ( 𝑊  ++  〈“ ( 𝑊 ‘ 0 ) ”〉 ) )  −  1 ) ) | 
						
							| 5 | 4 | breq2d | ⊢ ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  →  ( 1  ≤  ( ♯ ‘ 𝑊 )  ↔  1  ≤  ( ( ♯ ‘ ( 𝑊  ++  〈“ ( 𝑊 ‘ 0 ) ”〉 ) )  −  1 ) ) ) | 
						
							| 6 | 5 | biimpa | ⊢ ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  1  ≤  ( ♯ ‘ 𝑊 ) )  →  1  ≤  ( ( ♯ ‘ ( 𝑊  ++  〈“ ( 𝑊 ‘ 0 ) ”〉 ) )  −  1 ) ) | 
						
							| 7 | 6 | 3adant3 | ⊢ ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  1  ≤  ( ♯ ‘ 𝑊 )  ∧  〈 𝑓 ,  ( 𝑊  ++  〈“ ( 𝑊 ‘ 0 ) ”〉 ) 〉  ∈  ( ClWalks ‘ 𝐺 ) )  →  1  ≤  ( ( ♯ ‘ ( 𝑊  ++  〈“ ( 𝑊 ‘ 0 ) ”〉 ) )  −  1 ) ) | 
						
							| 8 |  | df-br | ⊢ ( 𝑓 ( ClWalks ‘ 𝐺 ) ( 𝑊  ++  〈“ ( 𝑊 ‘ 0 ) ”〉 )  ↔  〈 𝑓 ,  ( 𝑊  ++  〈“ ( 𝑊 ‘ 0 ) ”〉 ) 〉  ∈  ( ClWalks ‘ 𝐺 ) ) | 
						
							| 9 |  | clwlkiswlk | ⊢ ( 𝑓 ( ClWalks ‘ 𝐺 ) ( 𝑊  ++  〈“ ( 𝑊 ‘ 0 ) ”〉 )  →  𝑓 ( Walks ‘ 𝐺 ) ( 𝑊  ++  〈“ ( 𝑊 ‘ 0 ) ”〉 ) ) | 
						
							| 10 |  | wlklenvm1 | ⊢ ( 𝑓 ( Walks ‘ 𝐺 ) ( 𝑊  ++  〈“ ( 𝑊 ‘ 0 ) ”〉 )  →  ( ♯ ‘ 𝑓 )  =  ( ( ♯ ‘ ( 𝑊  ++  〈“ ( 𝑊 ‘ 0 ) ”〉 ) )  −  1 ) ) | 
						
							| 11 | 9 10 | syl | ⊢ ( 𝑓 ( ClWalks ‘ 𝐺 ) ( 𝑊  ++  〈“ ( 𝑊 ‘ 0 ) ”〉 )  →  ( ♯ ‘ 𝑓 )  =  ( ( ♯ ‘ ( 𝑊  ++  〈“ ( 𝑊 ‘ 0 ) ”〉 ) )  −  1 ) ) | 
						
							| 12 | 8 11 | sylbir | ⊢ ( 〈 𝑓 ,  ( 𝑊  ++  〈“ ( 𝑊 ‘ 0 ) ”〉 ) 〉  ∈  ( ClWalks ‘ 𝐺 )  →  ( ♯ ‘ 𝑓 )  =  ( ( ♯ ‘ ( 𝑊  ++  〈“ ( 𝑊 ‘ 0 ) ”〉 ) )  −  1 ) ) | 
						
							| 13 | 12 | 3ad2ant3 | ⊢ ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  1  ≤  ( ♯ ‘ 𝑊 )  ∧  〈 𝑓 ,  ( 𝑊  ++  〈“ ( 𝑊 ‘ 0 ) ”〉 ) 〉  ∈  ( ClWalks ‘ 𝐺 ) )  →  ( ♯ ‘ 𝑓 )  =  ( ( ♯ ‘ ( 𝑊  ++  〈“ ( 𝑊 ‘ 0 ) ”〉 ) )  −  1 ) ) | 
						
							| 14 | 7 13 | breqtrrd | ⊢ ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  1  ≤  ( ♯ ‘ 𝑊 )  ∧  〈 𝑓 ,  ( 𝑊  ++  〈“ ( 𝑊 ‘ 0 ) ”〉 ) 〉  ∈  ( ClWalks ‘ 𝐺 ) )  →  1  ≤  ( ♯ ‘ 𝑓 ) ) | 
						
							| 15 |  | vex | ⊢ 𝑓  ∈  V | 
						
							| 16 |  | ovex | ⊢ ( 𝑊  ++  〈“ ( 𝑊 ‘ 0 ) ”〉 )  ∈  V | 
						
							| 17 | 15 16 | op1std | ⊢ ( 𝑐  =  〈 𝑓 ,  ( 𝑊  ++  〈“ ( 𝑊 ‘ 0 ) ”〉 ) 〉  →  ( 1st  ‘ 𝑐 )  =  𝑓 ) | 
						
							| 18 | 17 | fveq2d | ⊢ ( 𝑐  =  〈 𝑓 ,  ( 𝑊  ++  〈“ ( 𝑊 ‘ 0 ) ”〉 ) 〉  →  ( ♯ ‘ ( 1st  ‘ 𝑐 ) )  =  ( ♯ ‘ 𝑓 ) ) | 
						
							| 19 | 18 | breq2d | ⊢ ( 𝑐  =  〈 𝑓 ,  ( 𝑊  ++  〈“ ( 𝑊 ‘ 0 ) ”〉 ) 〉  →  ( 1  ≤  ( ♯ ‘ ( 1st  ‘ 𝑐 ) )  ↔  1  ≤  ( ♯ ‘ 𝑓 ) ) ) | 
						
							| 20 |  | 2fveq3 | ⊢ ( 𝑤  =  𝑐  →  ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  ( ♯ ‘ ( 1st  ‘ 𝑐 ) ) ) | 
						
							| 21 | 20 | breq2d | ⊢ ( 𝑤  =  𝑐  →  ( 1  ≤  ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  ↔  1  ≤  ( ♯ ‘ ( 1st  ‘ 𝑐 ) ) ) ) | 
						
							| 22 | 21 | cbvrabv | ⊢ { 𝑤  ∈  ( ClWalks ‘ 𝐺 )  ∣  1  ≤  ( ♯ ‘ ( 1st  ‘ 𝑤 ) ) }  =  { 𝑐  ∈  ( ClWalks ‘ 𝐺 )  ∣  1  ≤  ( ♯ ‘ ( 1st  ‘ 𝑐 ) ) } | 
						
							| 23 | 1 22 | eqtri | ⊢ 𝐶  =  { 𝑐  ∈  ( ClWalks ‘ 𝐺 )  ∣  1  ≤  ( ♯ ‘ ( 1st  ‘ 𝑐 ) ) } | 
						
							| 24 | 19 23 | elrab2 | ⊢ ( 〈 𝑓 ,  ( 𝑊  ++  〈“ ( 𝑊 ‘ 0 ) ”〉 ) 〉  ∈  𝐶  ↔  ( 〈 𝑓 ,  ( 𝑊  ++  〈“ ( 𝑊 ‘ 0 ) ”〉 ) 〉  ∈  ( ClWalks ‘ 𝐺 )  ∧  1  ≤  ( ♯ ‘ 𝑓 ) ) ) | 
						
							| 25 | 2 14 24 | sylanbrc | ⊢ ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  1  ≤  ( ♯ ‘ 𝑊 )  ∧  〈 𝑓 ,  ( 𝑊  ++  〈“ ( 𝑊 ‘ 0 ) ”〉 ) 〉  ∈  ( ClWalks ‘ 𝐺 ) )  →  〈 𝑓 ,  ( 𝑊  ++  〈“ ( 𝑊 ‘ 0 ) ”〉 ) 〉  ∈  𝐶 ) |