| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clwlkclwwlkf.c |  |-  C = { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } | 
						
							| 2 |  | simp3 |  |-  ( ( W e. Word ( Vtx ` G ) /\ 1 <_ ( # ` W ) /\ <. f , ( W ++ <" ( W ` 0 ) "> ) >. e. ( ClWalks ` G ) ) -> <. f , ( W ++ <" ( W ` 0 ) "> ) >. e. ( ClWalks ` G ) ) | 
						
							| 3 |  | wrdlenccats1lenm1 |  |-  ( W e. Word ( Vtx ` G ) -> ( ( # ` ( W ++ <" ( W ` 0 ) "> ) ) - 1 ) = ( # ` W ) ) | 
						
							| 4 | 3 | eqcomd |  |-  ( W e. Word ( Vtx ` G ) -> ( # ` W ) = ( ( # ` ( W ++ <" ( W ` 0 ) "> ) ) - 1 ) ) | 
						
							| 5 | 4 | breq2d |  |-  ( W e. Word ( Vtx ` G ) -> ( 1 <_ ( # ` W ) <-> 1 <_ ( ( # ` ( W ++ <" ( W ` 0 ) "> ) ) - 1 ) ) ) | 
						
							| 6 | 5 | biimpa |  |-  ( ( W e. Word ( Vtx ` G ) /\ 1 <_ ( # ` W ) ) -> 1 <_ ( ( # ` ( W ++ <" ( W ` 0 ) "> ) ) - 1 ) ) | 
						
							| 7 | 6 | 3adant3 |  |-  ( ( W e. Word ( Vtx ` G ) /\ 1 <_ ( # ` W ) /\ <. f , ( W ++ <" ( W ` 0 ) "> ) >. e. ( ClWalks ` G ) ) -> 1 <_ ( ( # ` ( W ++ <" ( W ` 0 ) "> ) ) - 1 ) ) | 
						
							| 8 |  | df-br |  |-  ( f ( ClWalks ` G ) ( W ++ <" ( W ` 0 ) "> ) <-> <. f , ( W ++ <" ( W ` 0 ) "> ) >. e. ( ClWalks ` G ) ) | 
						
							| 9 |  | clwlkiswlk |  |-  ( f ( ClWalks ` G ) ( W ++ <" ( W ` 0 ) "> ) -> f ( Walks ` G ) ( W ++ <" ( W ` 0 ) "> ) ) | 
						
							| 10 |  | wlklenvm1 |  |-  ( f ( Walks ` G ) ( W ++ <" ( W ` 0 ) "> ) -> ( # ` f ) = ( ( # ` ( W ++ <" ( W ` 0 ) "> ) ) - 1 ) ) | 
						
							| 11 | 9 10 | syl |  |-  ( f ( ClWalks ` G ) ( W ++ <" ( W ` 0 ) "> ) -> ( # ` f ) = ( ( # ` ( W ++ <" ( W ` 0 ) "> ) ) - 1 ) ) | 
						
							| 12 | 8 11 | sylbir |  |-  ( <. f , ( W ++ <" ( W ` 0 ) "> ) >. e. ( ClWalks ` G ) -> ( # ` f ) = ( ( # ` ( W ++ <" ( W ` 0 ) "> ) ) - 1 ) ) | 
						
							| 13 | 12 | 3ad2ant3 |  |-  ( ( W e. Word ( Vtx ` G ) /\ 1 <_ ( # ` W ) /\ <. f , ( W ++ <" ( W ` 0 ) "> ) >. e. ( ClWalks ` G ) ) -> ( # ` f ) = ( ( # ` ( W ++ <" ( W ` 0 ) "> ) ) - 1 ) ) | 
						
							| 14 | 7 13 | breqtrrd |  |-  ( ( W e. Word ( Vtx ` G ) /\ 1 <_ ( # ` W ) /\ <. f , ( W ++ <" ( W ` 0 ) "> ) >. e. ( ClWalks ` G ) ) -> 1 <_ ( # ` f ) ) | 
						
							| 15 |  | vex |  |-  f e. _V | 
						
							| 16 |  | ovex |  |-  ( W ++ <" ( W ` 0 ) "> ) e. _V | 
						
							| 17 | 15 16 | op1std |  |-  ( c = <. f , ( W ++ <" ( W ` 0 ) "> ) >. -> ( 1st ` c ) = f ) | 
						
							| 18 | 17 | fveq2d |  |-  ( c = <. f , ( W ++ <" ( W ` 0 ) "> ) >. -> ( # ` ( 1st ` c ) ) = ( # ` f ) ) | 
						
							| 19 | 18 | breq2d |  |-  ( c = <. f , ( W ++ <" ( W ` 0 ) "> ) >. -> ( 1 <_ ( # ` ( 1st ` c ) ) <-> 1 <_ ( # ` f ) ) ) | 
						
							| 20 |  | 2fveq3 |  |-  ( w = c -> ( # ` ( 1st ` w ) ) = ( # ` ( 1st ` c ) ) ) | 
						
							| 21 | 20 | breq2d |  |-  ( w = c -> ( 1 <_ ( # ` ( 1st ` w ) ) <-> 1 <_ ( # ` ( 1st ` c ) ) ) ) | 
						
							| 22 | 21 | cbvrabv |  |-  { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } = { c e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` c ) ) } | 
						
							| 23 | 1 22 | eqtri |  |-  C = { c e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` c ) ) } | 
						
							| 24 | 19 23 | elrab2 |  |-  ( <. f , ( W ++ <" ( W ` 0 ) "> ) >. e. C <-> ( <. f , ( W ++ <" ( W ` 0 ) "> ) >. e. ( ClWalks ` G ) /\ 1 <_ ( # ` f ) ) ) | 
						
							| 25 | 2 14 24 | sylanbrc |  |-  ( ( W e. Word ( Vtx ` G ) /\ 1 <_ ( # ` W ) /\ <. f , ( W ++ <" ( W ` 0 ) "> ) >. e. ( ClWalks ` G ) ) -> <. f , ( W ++ <" ( W ` 0 ) "> ) >. e. C ) |