| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clwlkclwwlkf.c |
|- C = { w e. ( ClWalks ` G ) | 1 <_ ( # ` ( 1st ` w ) ) } |
| 2 |
|
clwlkclwwlkf.f |
|- F = ( c e. C |-> ( ( 2nd ` c ) prefix ( ( # ` ( 2nd ` c ) ) - 1 ) ) ) |
| 3 |
1 2
|
clwlkclwwlkf |
|- ( G e. USPGraph -> F : C --> ( ClWWalks ` G ) ) |
| 4 |
|
clwwlkgt0 |
|- ( w e. ( ClWWalks ` G ) -> 0 < ( # ` w ) ) |
| 5 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
| 6 |
5
|
clwwlkbp |
|- ( w e. ( ClWWalks ` G ) -> ( G e. _V /\ w e. Word ( Vtx ` G ) /\ w =/= (/) ) ) |
| 7 |
|
lencl |
|- ( w e. Word ( Vtx ` G ) -> ( # ` w ) e. NN0 ) |
| 8 |
7
|
nn0zd |
|- ( w e. Word ( Vtx ` G ) -> ( # ` w ) e. ZZ ) |
| 9 |
|
zgt0ge1 |
|- ( ( # ` w ) e. ZZ -> ( 0 < ( # ` w ) <-> 1 <_ ( # ` w ) ) ) |
| 10 |
8 9
|
syl |
|- ( w e. Word ( Vtx ` G ) -> ( 0 < ( # ` w ) <-> 1 <_ ( # ` w ) ) ) |
| 11 |
10
|
biimpd |
|- ( w e. Word ( Vtx ` G ) -> ( 0 < ( # ` w ) -> 1 <_ ( # ` w ) ) ) |
| 12 |
11
|
anc2li |
|- ( w e. Word ( Vtx ` G ) -> ( 0 < ( # ` w ) -> ( w e. Word ( Vtx ` G ) /\ 1 <_ ( # ` w ) ) ) ) |
| 13 |
12
|
3ad2ant2 |
|- ( ( G e. _V /\ w e. Word ( Vtx ` G ) /\ w =/= (/) ) -> ( 0 < ( # ` w ) -> ( w e. Word ( Vtx ` G ) /\ 1 <_ ( # ` w ) ) ) ) |
| 14 |
6 13
|
syl |
|- ( w e. ( ClWWalks ` G ) -> ( 0 < ( # ` w ) -> ( w e. Word ( Vtx ` G ) /\ 1 <_ ( # ` w ) ) ) ) |
| 15 |
4 14
|
mpd |
|- ( w e. ( ClWWalks ` G ) -> ( w e. Word ( Vtx ` G ) /\ 1 <_ ( # ` w ) ) ) |
| 16 |
15
|
adantl |
|- ( ( G e. USPGraph /\ w e. ( ClWWalks ` G ) ) -> ( w e. Word ( Vtx ` G ) /\ 1 <_ ( # ` w ) ) ) |
| 17 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
| 18 |
5 17
|
clwlkclwwlk2 |
|- ( ( G e. USPGraph /\ w e. Word ( Vtx ` G ) /\ 1 <_ ( # ` w ) ) -> ( E. f f ( ClWalks ` G ) ( w ++ <" ( w ` 0 ) "> ) <-> w e. ( ClWWalks ` G ) ) ) |
| 19 |
|
df-br |
|- ( f ( ClWalks ` G ) ( w ++ <" ( w ` 0 ) "> ) <-> <. f , ( w ++ <" ( w ` 0 ) "> ) >. e. ( ClWalks ` G ) ) |
| 20 |
|
simpr2 |
|- ( ( <. f , ( w ++ <" ( w ` 0 ) "> ) >. e. ( ClWalks ` G ) /\ ( G e. USPGraph /\ w e. Word ( Vtx ` G ) /\ 1 <_ ( # ` w ) ) ) -> w e. Word ( Vtx ` G ) ) |
| 21 |
|
simpr3 |
|- ( ( <. f , ( w ++ <" ( w ` 0 ) "> ) >. e. ( ClWalks ` G ) /\ ( G e. USPGraph /\ w e. Word ( Vtx ` G ) /\ 1 <_ ( # ` w ) ) ) -> 1 <_ ( # ` w ) ) |
| 22 |
|
simpl |
|- ( ( <. f , ( w ++ <" ( w ` 0 ) "> ) >. e. ( ClWalks ` G ) /\ ( G e. USPGraph /\ w e. Word ( Vtx ` G ) /\ 1 <_ ( # ` w ) ) ) -> <. f , ( w ++ <" ( w ` 0 ) "> ) >. e. ( ClWalks ` G ) ) |
| 23 |
1
|
clwlkclwwlkfolem |
|- ( ( w e. Word ( Vtx ` G ) /\ 1 <_ ( # ` w ) /\ <. f , ( w ++ <" ( w ` 0 ) "> ) >. e. ( ClWalks ` G ) ) -> <. f , ( w ++ <" ( w ` 0 ) "> ) >. e. C ) |
| 24 |
20 21 22 23
|
syl3anc |
|- ( ( <. f , ( w ++ <" ( w ` 0 ) "> ) >. e. ( ClWalks ` G ) /\ ( G e. USPGraph /\ w e. Word ( Vtx ` G ) /\ 1 <_ ( # ` w ) ) ) -> <. f , ( w ++ <" ( w ` 0 ) "> ) >. e. C ) |
| 25 |
23
|
3expa |
|- ( ( ( w e. Word ( Vtx ` G ) /\ 1 <_ ( # ` w ) ) /\ <. f , ( w ++ <" ( w ` 0 ) "> ) >. e. ( ClWalks ` G ) ) -> <. f , ( w ++ <" ( w ` 0 ) "> ) >. e. C ) |
| 26 |
|
ovex |
|- ( ( w ++ <" ( w ` 0 ) "> ) prefix ( ( # ` ( w ++ <" ( w ` 0 ) "> ) ) - 1 ) ) e. _V |
| 27 |
|
fveq2 |
|- ( c = <. f , ( w ++ <" ( w ` 0 ) "> ) >. -> ( 2nd ` c ) = ( 2nd ` <. f , ( w ++ <" ( w ` 0 ) "> ) >. ) ) |
| 28 |
|
2fveq3 |
|- ( c = <. f , ( w ++ <" ( w ` 0 ) "> ) >. -> ( # ` ( 2nd ` c ) ) = ( # ` ( 2nd ` <. f , ( w ++ <" ( w ` 0 ) "> ) >. ) ) ) |
| 29 |
28
|
oveq1d |
|- ( c = <. f , ( w ++ <" ( w ` 0 ) "> ) >. -> ( ( # ` ( 2nd ` c ) ) - 1 ) = ( ( # ` ( 2nd ` <. f , ( w ++ <" ( w ` 0 ) "> ) >. ) ) - 1 ) ) |
| 30 |
27 29
|
oveq12d |
|- ( c = <. f , ( w ++ <" ( w ` 0 ) "> ) >. -> ( ( 2nd ` c ) prefix ( ( # ` ( 2nd ` c ) ) - 1 ) ) = ( ( 2nd ` <. f , ( w ++ <" ( w ` 0 ) "> ) >. ) prefix ( ( # ` ( 2nd ` <. f , ( w ++ <" ( w ` 0 ) "> ) >. ) ) - 1 ) ) ) |
| 31 |
|
vex |
|- f e. _V |
| 32 |
|
ovex |
|- ( w ++ <" ( w ` 0 ) "> ) e. _V |
| 33 |
31 32
|
op2nd |
|- ( 2nd ` <. f , ( w ++ <" ( w ` 0 ) "> ) >. ) = ( w ++ <" ( w ` 0 ) "> ) |
| 34 |
33
|
fveq2i |
|- ( # ` ( 2nd ` <. f , ( w ++ <" ( w ` 0 ) "> ) >. ) ) = ( # ` ( w ++ <" ( w ` 0 ) "> ) ) |
| 35 |
34
|
oveq1i |
|- ( ( # ` ( 2nd ` <. f , ( w ++ <" ( w ` 0 ) "> ) >. ) ) - 1 ) = ( ( # ` ( w ++ <" ( w ` 0 ) "> ) ) - 1 ) |
| 36 |
33 35
|
oveq12i |
|- ( ( 2nd ` <. f , ( w ++ <" ( w ` 0 ) "> ) >. ) prefix ( ( # ` ( 2nd ` <. f , ( w ++ <" ( w ` 0 ) "> ) >. ) ) - 1 ) ) = ( ( w ++ <" ( w ` 0 ) "> ) prefix ( ( # ` ( w ++ <" ( w ` 0 ) "> ) ) - 1 ) ) |
| 37 |
30 36
|
eqtrdi |
|- ( c = <. f , ( w ++ <" ( w ` 0 ) "> ) >. -> ( ( 2nd ` c ) prefix ( ( # ` ( 2nd ` c ) ) - 1 ) ) = ( ( w ++ <" ( w ` 0 ) "> ) prefix ( ( # ` ( w ++ <" ( w ` 0 ) "> ) ) - 1 ) ) ) |
| 38 |
37 2
|
fvmptg |
|- ( ( <. f , ( w ++ <" ( w ` 0 ) "> ) >. e. C /\ ( ( w ++ <" ( w ` 0 ) "> ) prefix ( ( # ` ( w ++ <" ( w ` 0 ) "> ) ) - 1 ) ) e. _V ) -> ( F ` <. f , ( w ++ <" ( w ` 0 ) "> ) >. ) = ( ( w ++ <" ( w ` 0 ) "> ) prefix ( ( # ` ( w ++ <" ( w ` 0 ) "> ) ) - 1 ) ) ) |
| 39 |
25 26 38
|
sylancl |
|- ( ( ( w e. Word ( Vtx ` G ) /\ 1 <_ ( # ` w ) ) /\ <. f , ( w ++ <" ( w ` 0 ) "> ) >. e. ( ClWalks ` G ) ) -> ( F ` <. f , ( w ++ <" ( w ` 0 ) "> ) >. ) = ( ( w ++ <" ( w ` 0 ) "> ) prefix ( ( # ` ( w ++ <" ( w ` 0 ) "> ) ) - 1 ) ) ) |
| 40 |
|
wrdlenccats1lenm1 |
|- ( w e. Word ( Vtx ` G ) -> ( ( # ` ( w ++ <" ( w ` 0 ) "> ) ) - 1 ) = ( # ` w ) ) |
| 41 |
40
|
ad2antrr |
|- ( ( ( w e. Word ( Vtx ` G ) /\ 1 <_ ( # ` w ) ) /\ <. f , ( w ++ <" ( w ` 0 ) "> ) >. e. ( ClWalks ` G ) ) -> ( ( # ` ( w ++ <" ( w ` 0 ) "> ) ) - 1 ) = ( # ` w ) ) |
| 42 |
41
|
oveq2d |
|- ( ( ( w e. Word ( Vtx ` G ) /\ 1 <_ ( # ` w ) ) /\ <. f , ( w ++ <" ( w ` 0 ) "> ) >. e. ( ClWalks ` G ) ) -> ( ( w ++ <" ( w ` 0 ) "> ) prefix ( ( # ` ( w ++ <" ( w ` 0 ) "> ) ) - 1 ) ) = ( ( w ++ <" ( w ` 0 ) "> ) prefix ( # ` w ) ) ) |
| 43 |
|
simpll |
|- ( ( ( w e. Word ( Vtx ` G ) /\ 1 <_ ( # ` w ) ) /\ <. f , ( w ++ <" ( w ` 0 ) "> ) >. e. ( ClWalks ` G ) ) -> w e. Word ( Vtx ` G ) ) |
| 44 |
|
simpl |
|- ( ( ( w e. Word ( Vtx ` G ) /\ 1 <_ ( # ` w ) ) /\ <. f , ( w ++ <" ( w ` 0 ) "> ) >. e. ( ClWalks ` G ) ) -> ( w e. Word ( Vtx ` G ) /\ 1 <_ ( # ` w ) ) ) |
| 45 |
|
wrdsymb1 |
|- ( ( w e. Word ( Vtx ` G ) /\ 1 <_ ( # ` w ) ) -> ( w ` 0 ) e. ( Vtx ` G ) ) |
| 46 |
44 45
|
syl |
|- ( ( ( w e. Word ( Vtx ` G ) /\ 1 <_ ( # ` w ) ) /\ <. f , ( w ++ <" ( w ` 0 ) "> ) >. e. ( ClWalks ` G ) ) -> ( w ` 0 ) e. ( Vtx ` G ) ) |
| 47 |
46
|
s1cld |
|- ( ( ( w e. Word ( Vtx ` G ) /\ 1 <_ ( # ` w ) ) /\ <. f , ( w ++ <" ( w ` 0 ) "> ) >. e. ( ClWalks ` G ) ) -> <" ( w ` 0 ) "> e. Word ( Vtx ` G ) ) |
| 48 |
|
eqidd |
|- ( ( ( w e. Word ( Vtx ` G ) /\ 1 <_ ( # ` w ) ) /\ <. f , ( w ++ <" ( w ` 0 ) "> ) >. e. ( ClWalks ` G ) ) -> ( # ` w ) = ( # ` w ) ) |
| 49 |
|
pfxccatid |
|- ( ( w e. Word ( Vtx ` G ) /\ <" ( w ` 0 ) "> e. Word ( Vtx ` G ) /\ ( # ` w ) = ( # ` w ) ) -> ( ( w ++ <" ( w ` 0 ) "> ) prefix ( # ` w ) ) = w ) |
| 50 |
43 47 48 49
|
syl3anc |
|- ( ( ( w e. Word ( Vtx ` G ) /\ 1 <_ ( # ` w ) ) /\ <. f , ( w ++ <" ( w ` 0 ) "> ) >. e. ( ClWalks ` G ) ) -> ( ( w ++ <" ( w ` 0 ) "> ) prefix ( # ` w ) ) = w ) |
| 51 |
39 42 50
|
3eqtrrd |
|- ( ( ( w e. Word ( Vtx ` G ) /\ 1 <_ ( # ` w ) ) /\ <. f , ( w ++ <" ( w ` 0 ) "> ) >. e. ( ClWalks ` G ) ) -> w = ( F ` <. f , ( w ++ <" ( w ` 0 ) "> ) >. ) ) |
| 52 |
51
|
ex |
|- ( ( w e. Word ( Vtx ` G ) /\ 1 <_ ( # ` w ) ) -> ( <. f , ( w ++ <" ( w ` 0 ) "> ) >. e. ( ClWalks ` G ) -> w = ( F ` <. f , ( w ++ <" ( w ` 0 ) "> ) >. ) ) ) |
| 53 |
52
|
3adant1 |
|- ( ( G e. USPGraph /\ w e. Word ( Vtx ` G ) /\ 1 <_ ( # ` w ) ) -> ( <. f , ( w ++ <" ( w ` 0 ) "> ) >. e. ( ClWalks ` G ) -> w = ( F ` <. f , ( w ++ <" ( w ` 0 ) "> ) >. ) ) ) |
| 54 |
53
|
ad2antlr |
|- ( ( ( <. f , ( w ++ <" ( w ` 0 ) "> ) >. e. ( ClWalks ` G ) /\ ( G e. USPGraph /\ w e. Word ( Vtx ` G ) /\ 1 <_ ( # ` w ) ) ) /\ c = <. f , ( w ++ <" ( w ` 0 ) "> ) >. ) -> ( <. f , ( w ++ <" ( w ` 0 ) "> ) >. e. ( ClWalks ` G ) -> w = ( F ` <. f , ( w ++ <" ( w ` 0 ) "> ) >. ) ) ) |
| 55 |
|
fveq2 |
|- ( c = <. f , ( w ++ <" ( w ` 0 ) "> ) >. -> ( F ` c ) = ( F ` <. f , ( w ++ <" ( w ` 0 ) "> ) >. ) ) |
| 56 |
55
|
eqeq2d |
|- ( c = <. f , ( w ++ <" ( w ` 0 ) "> ) >. -> ( w = ( F ` c ) <-> w = ( F ` <. f , ( w ++ <" ( w ` 0 ) "> ) >. ) ) ) |
| 57 |
56
|
imbi2d |
|- ( c = <. f , ( w ++ <" ( w ` 0 ) "> ) >. -> ( ( <. f , ( w ++ <" ( w ` 0 ) "> ) >. e. ( ClWalks ` G ) -> w = ( F ` c ) ) <-> ( <. f , ( w ++ <" ( w ` 0 ) "> ) >. e. ( ClWalks ` G ) -> w = ( F ` <. f , ( w ++ <" ( w ` 0 ) "> ) >. ) ) ) ) |
| 58 |
57
|
adantl |
|- ( ( ( <. f , ( w ++ <" ( w ` 0 ) "> ) >. e. ( ClWalks ` G ) /\ ( G e. USPGraph /\ w e. Word ( Vtx ` G ) /\ 1 <_ ( # ` w ) ) ) /\ c = <. f , ( w ++ <" ( w ` 0 ) "> ) >. ) -> ( ( <. f , ( w ++ <" ( w ` 0 ) "> ) >. e. ( ClWalks ` G ) -> w = ( F ` c ) ) <-> ( <. f , ( w ++ <" ( w ` 0 ) "> ) >. e. ( ClWalks ` G ) -> w = ( F ` <. f , ( w ++ <" ( w ` 0 ) "> ) >. ) ) ) ) |
| 59 |
54 58
|
mpbird |
|- ( ( ( <. f , ( w ++ <" ( w ` 0 ) "> ) >. e. ( ClWalks ` G ) /\ ( G e. USPGraph /\ w e. Word ( Vtx ` G ) /\ 1 <_ ( # ` w ) ) ) /\ c = <. f , ( w ++ <" ( w ` 0 ) "> ) >. ) -> ( <. f , ( w ++ <" ( w ` 0 ) "> ) >. e. ( ClWalks ` G ) -> w = ( F ` c ) ) ) |
| 60 |
24 59
|
rspcimedv |
|- ( ( <. f , ( w ++ <" ( w ` 0 ) "> ) >. e. ( ClWalks ` G ) /\ ( G e. USPGraph /\ w e. Word ( Vtx ` G ) /\ 1 <_ ( # ` w ) ) ) -> ( <. f , ( w ++ <" ( w ` 0 ) "> ) >. e. ( ClWalks ` G ) -> E. c e. C w = ( F ` c ) ) ) |
| 61 |
60
|
ex |
|- ( <. f , ( w ++ <" ( w ` 0 ) "> ) >. e. ( ClWalks ` G ) -> ( ( G e. USPGraph /\ w e. Word ( Vtx ` G ) /\ 1 <_ ( # ` w ) ) -> ( <. f , ( w ++ <" ( w ` 0 ) "> ) >. e. ( ClWalks ` G ) -> E. c e. C w = ( F ` c ) ) ) ) |
| 62 |
61
|
pm2.43b |
|- ( ( G e. USPGraph /\ w e. Word ( Vtx ` G ) /\ 1 <_ ( # ` w ) ) -> ( <. f , ( w ++ <" ( w ` 0 ) "> ) >. e. ( ClWalks ` G ) -> E. c e. C w = ( F ` c ) ) ) |
| 63 |
19 62
|
biimtrid |
|- ( ( G e. USPGraph /\ w e. Word ( Vtx ` G ) /\ 1 <_ ( # ` w ) ) -> ( f ( ClWalks ` G ) ( w ++ <" ( w ` 0 ) "> ) -> E. c e. C w = ( F ` c ) ) ) |
| 64 |
63
|
exlimdv |
|- ( ( G e. USPGraph /\ w e. Word ( Vtx ` G ) /\ 1 <_ ( # ` w ) ) -> ( E. f f ( ClWalks ` G ) ( w ++ <" ( w ` 0 ) "> ) -> E. c e. C w = ( F ` c ) ) ) |
| 65 |
18 64
|
sylbird |
|- ( ( G e. USPGraph /\ w e. Word ( Vtx ` G ) /\ 1 <_ ( # ` w ) ) -> ( w e. ( ClWWalks ` G ) -> E. c e. C w = ( F ` c ) ) ) |
| 66 |
65
|
3expib |
|- ( G e. USPGraph -> ( ( w e. Word ( Vtx ` G ) /\ 1 <_ ( # ` w ) ) -> ( w e. ( ClWWalks ` G ) -> E. c e. C w = ( F ` c ) ) ) ) |
| 67 |
66
|
com23 |
|- ( G e. USPGraph -> ( w e. ( ClWWalks ` G ) -> ( ( w e. Word ( Vtx ` G ) /\ 1 <_ ( # ` w ) ) -> E. c e. C w = ( F ` c ) ) ) ) |
| 68 |
67
|
imp |
|- ( ( G e. USPGraph /\ w e. ( ClWWalks ` G ) ) -> ( ( w e. Word ( Vtx ` G ) /\ 1 <_ ( # ` w ) ) -> E. c e. C w = ( F ` c ) ) ) |
| 69 |
16 68
|
mpd |
|- ( ( G e. USPGraph /\ w e. ( ClWWalks ` G ) ) -> E. c e. C w = ( F ` c ) ) |
| 70 |
69
|
ralrimiva |
|- ( G e. USPGraph -> A. w e. ( ClWWalks ` G ) E. c e. C w = ( F ` c ) ) |
| 71 |
|
dffo3 |
|- ( F : C -onto-> ( ClWWalks ` G ) <-> ( F : C --> ( ClWWalks ` G ) /\ A. w e. ( ClWWalks ` G ) E. c e. C w = ( F ` c ) ) ) |
| 72 |
3 70 71
|
sylanbrc |
|- ( G e. USPGraph -> F : C -onto-> ( ClWWalks ` G ) ) |