Description: Lemma for clwlkclwwlkfo . (Contributed by AV, 25-May-2022)
Ref | Expression | ||
---|---|---|---|
Hypothesis | clwlkclwwlkf.c | |
|
Assertion | clwlkclwwlkfolem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clwlkclwwlkf.c | |
|
2 | simp3 | |
|
3 | wrdlenccats1lenm1 | |
|
4 | 3 | eqcomd | |
5 | 4 | breq2d | |
6 | 5 | biimpa | |
7 | 6 | 3adant3 | |
8 | df-br | |
|
9 | clwlkiswlk | |
|
10 | wlklenvm1 | |
|
11 | 9 10 | syl | |
12 | 8 11 | sylbir | |
13 | 12 | 3ad2ant3 | |
14 | 7 13 | breqtrrd | |
15 | vex | |
|
16 | ovex | |
|
17 | 15 16 | op1std | |
18 | 17 | fveq2d | |
19 | 18 | breq2d | |
20 | 2fveq3 | |
|
21 | 20 | breq2d | |
22 | 21 | cbvrabv | |
23 | 1 22 | eqtri | |
24 | 19 23 | elrab2 | |
25 | 2 14 24 | sylanbrc | |