Metamath Proof Explorer


Theorem clwlkclwwlkfolem

Description: Lemma for clwlkclwwlkfo . (Contributed by AV, 25-May-2022)

Ref Expression
Hypothesis clwlkclwwlkf.c C=wClWalksG|11stw
Assertion clwlkclwwlkfolem WWordVtxG1WfW++⟨“W0”⟩ClWalksGfW++⟨“W0”⟩C

Proof

Step Hyp Ref Expression
1 clwlkclwwlkf.c C=wClWalksG|11stw
2 simp3 WWordVtxG1WfW++⟨“W0”⟩ClWalksGfW++⟨“W0”⟩ClWalksG
3 wrdlenccats1lenm1 WWordVtxGW++⟨“W0”⟩1=W
4 3 eqcomd WWordVtxGW=W++⟨“W0”⟩1
5 4 breq2d WWordVtxG1W1W++⟨“W0”⟩1
6 5 biimpa WWordVtxG1W1W++⟨“W0”⟩1
7 6 3adant3 WWordVtxG1WfW++⟨“W0”⟩ClWalksG1W++⟨“W0”⟩1
8 df-br fClWalksGW++⟨“W0”⟩fW++⟨“W0”⟩ClWalksG
9 clwlkiswlk fClWalksGW++⟨“W0”⟩fWalksGW++⟨“W0”⟩
10 wlklenvm1 fWalksGW++⟨“W0”⟩f=W++⟨“W0”⟩1
11 9 10 syl fClWalksGW++⟨“W0”⟩f=W++⟨“W0”⟩1
12 8 11 sylbir fW++⟨“W0”⟩ClWalksGf=W++⟨“W0”⟩1
13 12 3ad2ant3 WWordVtxG1WfW++⟨“W0”⟩ClWalksGf=W++⟨“W0”⟩1
14 7 13 breqtrrd WWordVtxG1WfW++⟨“W0”⟩ClWalksG1f
15 vex fV
16 ovex W++⟨“W0”⟩V
17 15 16 op1std c=fW++⟨“W0”⟩1stc=f
18 17 fveq2d c=fW++⟨“W0”⟩1stc=f
19 18 breq2d c=fW++⟨“W0”⟩11stc1f
20 2fveq3 w=c1stw=1stc
21 20 breq2d w=c11stw11stc
22 21 cbvrabv wClWalksG|11stw=cClWalksG|11stc
23 1 22 eqtri C=cClWalksG|11stc
24 19 23 elrab2 fW++⟨“W0”⟩CfW++⟨“W0”⟩ClWalksG1f
25 2 14 24 sylanbrc WWordVtxG1WfW++⟨“W0”⟩ClWalksGfW++⟨“W0”⟩C