Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
β’ βͺ π½ = βͺ π½ |
2 |
|
cmptop |
β’ ( π½ β Comp β π½ β Top ) |
3 |
2
|
adantr |
β’ ( ( π½ β Comp β§ π₯ β βͺ π½ ) β π½ β Top ) |
4 |
1
|
topopn |
β’ ( π½ β Top β βͺ π½ β π½ ) |
5 |
3 4
|
syl |
β’ ( ( π½ β Comp β§ π₯ β βͺ π½ ) β βͺ π½ β π½ ) |
6 |
|
simpr |
β’ ( ( π½ β Comp β§ π₯ β βͺ π½ ) β π₯ β βͺ π½ ) |
7 |
6
|
snssd |
β’ ( ( π½ β Comp β§ π₯ β βͺ π½ ) β { π₯ } β βͺ π½ ) |
8 |
|
opnneiss |
β’ ( ( π½ β Top β§ βͺ π½ β π½ β§ { π₯ } β βͺ π½ ) β βͺ π½ β ( ( nei β π½ ) β { π₯ } ) ) |
9 |
3 5 7 8
|
syl3anc |
β’ ( ( π½ β Comp β§ π₯ β βͺ π½ ) β βͺ π½ β ( ( nei β π½ ) β { π₯ } ) ) |
10 |
1
|
restid |
β’ ( π½ β Top β ( π½ βΎt βͺ π½ ) = π½ ) |
11 |
3 10
|
syl |
β’ ( ( π½ β Comp β§ π₯ β βͺ π½ ) β ( π½ βΎt βͺ π½ ) = π½ ) |
12 |
|
simpl |
β’ ( ( π½ β Comp β§ π₯ β βͺ π½ ) β π½ β Comp ) |
13 |
11 12
|
eqeltrd |
β’ ( ( π½ β Comp β§ π₯ β βͺ π½ ) β ( π½ βΎt βͺ π½ ) β Comp ) |
14 |
|
oveq2 |
β’ ( π = βͺ π½ β ( π½ βΎt π ) = ( π½ βΎt βͺ π½ ) ) |
15 |
14
|
eleq1d |
β’ ( π = βͺ π½ β ( ( π½ βΎt π ) β Comp β ( π½ βΎt βͺ π½ ) β Comp ) ) |
16 |
15
|
rspcev |
β’ ( ( βͺ π½ β ( ( nei β π½ ) β { π₯ } ) β§ ( π½ βΎt βͺ π½ ) β Comp ) β β π β ( ( nei β π½ ) β { π₯ } ) ( π½ βΎt π ) β Comp ) |
17 |
9 13 16
|
syl2anc |
β’ ( ( π½ β Comp β§ π₯ β βͺ π½ ) β β π β ( ( nei β π½ ) β { π₯ } ) ( π½ βΎt π ) β Comp ) |
18 |
1 2 17
|
llycmpkgen2 |
β’ ( π½ β Comp β π½ β ran πGen ) |