Metamath Proof Explorer


Theorem cmpkgen

Description: A compact space is compactly generated. (Contributed by Mario Carneiro, 21-Mar-2015)

Ref Expression
Assertion cmpkgen ( 𝐽 ∈ Comp → 𝐽 ∈ ran 𝑘Gen )

Proof

Step Hyp Ref Expression
1 eqid 𝐽 = 𝐽
2 cmptop ( 𝐽 ∈ Comp → 𝐽 ∈ Top )
3 2 adantr ( ( 𝐽 ∈ Comp ∧ 𝑥 𝐽 ) → 𝐽 ∈ Top )
4 1 topopn ( 𝐽 ∈ Top → 𝐽𝐽 )
5 3 4 syl ( ( 𝐽 ∈ Comp ∧ 𝑥 𝐽 ) → 𝐽𝐽 )
6 simpr ( ( 𝐽 ∈ Comp ∧ 𝑥 𝐽 ) → 𝑥 𝐽 )
7 6 snssd ( ( 𝐽 ∈ Comp ∧ 𝑥 𝐽 ) → { 𝑥 } ⊆ 𝐽 )
8 opnneiss ( ( 𝐽 ∈ Top ∧ 𝐽𝐽 ∧ { 𝑥 } ⊆ 𝐽 ) → 𝐽 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) )
9 3 5 7 8 syl3anc ( ( 𝐽 ∈ Comp ∧ 𝑥 𝐽 ) → 𝐽 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) )
10 1 restid ( 𝐽 ∈ Top → ( 𝐽t 𝐽 ) = 𝐽 )
11 3 10 syl ( ( 𝐽 ∈ Comp ∧ 𝑥 𝐽 ) → ( 𝐽t 𝐽 ) = 𝐽 )
12 simpl ( ( 𝐽 ∈ Comp ∧ 𝑥 𝐽 ) → 𝐽 ∈ Comp )
13 11 12 eqeltrd ( ( 𝐽 ∈ Comp ∧ 𝑥 𝐽 ) → ( 𝐽t 𝐽 ) ∈ Comp )
14 oveq2 ( 𝑘 = 𝐽 → ( 𝐽t 𝑘 ) = ( 𝐽t 𝐽 ) )
15 14 eleq1d ( 𝑘 = 𝐽 → ( ( 𝐽t 𝑘 ) ∈ Comp ↔ ( 𝐽t 𝐽 ) ∈ Comp ) )
16 15 rspcev ( ( 𝐽 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ∧ ( 𝐽t 𝐽 ) ∈ Comp ) → ∃ 𝑘 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ( 𝐽t 𝑘 ) ∈ Comp )
17 9 13 16 syl2anc ( ( 𝐽 ∈ Comp ∧ 𝑥 𝐽 ) → ∃ 𝑘 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ( 𝐽t 𝑘 ) ∈ Comp )
18 1 2 17 llycmpkgen2 ( 𝐽 ∈ Comp → 𝐽 ∈ ran 𝑘Gen )