Metamath Proof Explorer


Theorem cnmpt1vsca

Description: Continuity of scalar multiplication; analogue of cnmpt12f which cannot be used directly because .s is not a function. (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Hypotheses tlmtrg.f 𝐹 = ( Scalar ‘ 𝑊 )
cnmpt1vsca.t · = ( ·𝑠𝑊 )
cnmpt1vsca.j 𝐽 = ( TopOpen ‘ 𝑊 )
cnmpt1vsca.k 𝐾 = ( TopOpen ‘ 𝐹 )
cnmpt1vsca.w ( 𝜑𝑊 ∈ TopMod )
cnmpt1vsca.l ( 𝜑𝐿 ∈ ( TopOn ‘ 𝑋 ) )
cnmpt1vsca.a ( 𝜑 → ( 𝑥𝑋𝐴 ) ∈ ( 𝐿 Cn 𝐾 ) )
cnmpt1vsca.b ( 𝜑 → ( 𝑥𝑋𝐵 ) ∈ ( 𝐿 Cn 𝐽 ) )
Assertion cnmpt1vsca ( 𝜑 → ( 𝑥𝑋 ↦ ( 𝐴 · 𝐵 ) ) ∈ ( 𝐿 Cn 𝐽 ) )

Proof

Step Hyp Ref Expression
1 tlmtrg.f 𝐹 = ( Scalar ‘ 𝑊 )
2 cnmpt1vsca.t · = ( ·𝑠𝑊 )
3 cnmpt1vsca.j 𝐽 = ( TopOpen ‘ 𝑊 )
4 cnmpt1vsca.k 𝐾 = ( TopOpen ‘ 𝐹 )
5 cnmpt1vsca.w ( 𝜑𝑊 ∈ TopMod )
6 cnmpt1vsca.l ( 𝜑𝐿 ∈ ( TopOn ‘ 𝑋 ) )
7 cnmpt1vsca.a ( 𝜑 → ( 𝑥𝑋𝐴 ) ∈ ( 𝐿 Cn 𝐾 ) )
8 cnmpt1vsca.b ( 𝜑 → ( 𝑥𝑋𝐵 ) ∈ ( 𝐿 Cn 𝐽 ) )
9 1 tlmscatps ( 𝑊 ∈ TopMod → 𝐹 ∈ TopSp )
10 5 9 syl ( 𝜑𝐹 ∈ TopSp )
11 eqid ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 )
12 11 4 istps ( 𝐹 ∈ TopSp ↔ 𝐾 ∈ ( TopOn ‘ ( Base ‘ 𝐹 ) ) )
13 10 12 sylib ( 𝜑𝐾 ∈ ( TopOn ‘ ( Base ‘ 𝐹 ) ) )
14 cnf2 ( ( 𝐿 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ ( Base ‘ 𝐹 ) ) ∧ ( 𝑥𝑋𝐴 ) ∈ ( 𝐿 Cn 𝐾 ) ) → ( 𝑥𝑋𝐴 ) : 𝑋 ⟶ ( Base ‘ 𝐹 ) )
15 6 13 7 14 syl3anc ( 𝜑 → ( 𝑥𝑋𝐴 ) : 𝑋 ⟶ ( Base ‘ 𝐹 ) )
16 15 fvmptelrn ( ( 𝜑𝑥𝑋 ) → 𝐴 ∈ ( Base ‘ 𝐹 ) )
17 tlmtps ( 𝑊 ∈ TopMod → 𝑊 ∈ TopSp )
18 5 17 syl ( 𝜑𝑊 ∈ TopSp )
19 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
20 19 3 istps ( 𝑊 ∈ TopSp ↔ 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝑊 ) ) )
21 18 20 sylib ( 𝜑𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝑊 ) ) )
22 cnf2 ( ( 𝐿 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝑊 ) ) ∧ ( 𝑥𝑋𝐵 ) ∈ ( 𝐿 Cn 𝐽 ) ) → ( 𝑥𝑋𝐵 ) : 𝑋 ⟶ ( Base ‘ 𝑊 ) )
23 6 21 8 22 syl3anc ( 𝜑 → ( 𝑥𝑋𝐵 ) : 𝑋 ⟶ ( Base ‘ 𝑊 ) )
24 23 fvmptelrn ( ( 𝜑𝑥𝑋 ) → 𝐵 ∈ ( Base ‘ 𝑊 ) )
25 eqid ( ·sf𝑊 ) = ( ·sf𝑊 )
26 19 1 11 25 2 scafval ( ( 𝐴 ∈ ( Base ‘ 𝐹 ) ∧ 𝐵 ∈ ( Base ‘ 𝑊 ) ) → ( 𝐴 ( ·sf𝑊 ) 𝐵 ) = ( 𝐴 · 𝐵 ) )
27 16 24 26 syl2anc ( ( 𝜑𝑥𝑋 ) → ( 𝐴 ( ·sf𝑊 ) 𝐵 ) = ( 𝐴 · 𝐵 ) )
28 27 mpteq2dva ( 𝜑 → ( 𝑥𝑋 ↦ ( 𝐴 ( ·sf𝑊 ) 𝐵 ) ) = ( 𝑥𝑋 ↦ ( 𝐴 · 𝐵 ) ) )
29 25 3 1 4 vscacn ( 𝑊 ∈ TopMod → ( ·sf𝑊 ) ∈ ( ( 𝐾 ×t 𝐽 ) Cn 𝐽 ) )
30 5 29 syl ( 𝜑 → ( ·sf𝑊 ) ∈ ( ( 𝐾 ×t 𝐽 ) Cn 𝐽 ) )
31 6 7 8 30 cnmpt12f ( 𝜑 → ( 𝑥𝑋 ↦ ( 𝐴 ( ·sf𝑊 ) 𝐵 ) ) ∈ ( 𝐿 Cn 𝐽 ) )
32 28 31 eqeltrrd ( 𝜑 → ( 𝑥𝑋 ↦ ( 𝐴 · 𝐵 ) ) ∈ ( 𝐿 Cn 𝐽 ) )