| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tlmtrg.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
| 2 |
|
cnmpt1vsca.t |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
| 3 |
|
cnmpt1vsca.j |
⊢ 𝐽 = ( TopOpen ‘ 𝑊 ) |
| 4 |
|
cnmpt1vsca.k |
⊢ 𝐾 = ( TopOpen ‘ 𝐹 ) |
| 5 |
|
cnmpt1vsca.w |
⊢ ( 𝜑 → 𝑊 ∈ TopMod ) |
| 6 |
|
cnmpt1vsca.l |
⊢ ( 𝜑 → 𝐿 ∈ ( TopOn ‘ 𝑋 ) ) |
| 7 |
|
cnmpt2vsca.m |
⊢ ( 𝜑 → 𝑀 ∈ ( TopOn ‘ 𝑌 ) ) |
| 8 |
|
cnmpt2vsca.a |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ∈ ( ( 𝐿 ×t 𝑀 ) Cn 𝐾 ) ) |
| 9 |
|
cnmpt2vsca.b |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∈ ( ( 𝐿 ×t 𝑀 ) Cn 𝐽 ) ) |
| 10 |
|
txtopon |
⊢ ( ( 𝐿 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑀 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐿 ×t 𝑀 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ) |
| 11 |
6 7 10
|
syl2anc |
⊢ ( 𝜑 → ( 𝐿 ×t 𝑀 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ) |
| 12 |
1
|
tlmscatps |
⊢ ( 𝑊 ∈ TopMod → 𝐹 ∈ TopSp ) |
| 13 |
5 12
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ TopSp ) |
| 14 |
|
eqid |
⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) |
| 15 |
14 4
|
istps |
⊢ ( 𝐹 ∈ TopSp ↔ 𝐾 ∈ ( TopOn ‘ ( Base ‘ 𝐹 ) ) ) |
| 16 |
13 15
|
sylib |
⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ ( Base ‘ 𝐹 ) ) ) |
| 17 |
|
cnf2 |
⊢ ( ( ( 𝐿 ×t 𝑀 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ∧ 𝐾 ∈ ( TopOn ‘ ( Base ‘ 𝐹 ) ) ∧ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ∈ ( ( 𝐿 ×t 𝑀 ) Cn 𝐾 ) ) → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) : ( 𝑋 × 𝑌 ) ⟶ ( Base ‘ 𝐹 ) ) |
| 18 |
11 16 8 17
|
syl3anc |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) : ( 𝑋 × 𝑌 ) ⟶ ( Base ‘ 𝐹 ) ) |
| 19 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) |
| 20 |
19
|
fmpo |
⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 𝐴 ∈ ( Base ‘ 𝐹 ) ↔ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) : ( 𝑋 × 𝑌 ) ⟶ ( Base ‘ 𝐹 ) ) |
| 21 |
18 20
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 𝐴 ∈ ( Base ‘ 𝐹 ) ) |
| 22 |
21
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ∀ 𝑦 ∈ 𝑌 𝐴 ∈ ( Base ‘ 𝐹 ) ) |
| 23 |
22
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑌 ) → 𝐴 ∈ ( Base ‘ 𝐹 ) ) |
| 24 |
|
tlmtps |
⊢ ( 𝑊 ∈ TopMod → 𝑊 ∈ TopSp ) |
| 25 |
5 24
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ TopSp ) |
| 26 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
| 27 |
26 3
|
istps |
⊢ ( 𝑊 ∈ TopSp ↔ 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝑊 ) ) ) |
| 28 |
25 27
|
sylib |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝑊 ) ) ) |
| 29 |
|
cnf2 |
⊢ ( ( ( 𝐿 ×t 𝑀 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ∧ 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝑊 ) ) ∧ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∈ ( ( 𝐿 ×t 𝑀 ) Cn 𝐽 ) ) → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) : ( 𝑋 × 𝑌 ) ⟶ ( Base ‘ 𝑊 ) ) |
| 30 |
11 28 9 29
|
syl3anc |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) : ( 𝑋 × 𝑌 ) ⟶ ( Base ‘ 𝑊 ) ) |
| 31 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) |
| 32 |
31
|
fmpo |
⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 𝐵 ∈ ( Base ‘ 𝑊 ) ↔ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) : ( 𝑋 × 𝑌 ) ⟶ ( Base ‘ 𝑊 ) ) |
| 33 |
30 32
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 𝐵 ∈ ( Base ‘ 𝑊 ) ) |
| 34 |
33
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ∀ 𝑦 ∈ 𝑌 𝐵 ∈ ( Base ‘ 𝑊 ) ) |
| 35 |
34
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑌 ) → 𝐵 ∈ ( Base ‘ 𝑊 ) ) |
| 36 |
|
eqid |
⊢ ( ·sf ‘ 𝑊 ) = ( ·sf ‘ 𝑊 ) |
| 37 |
26 1 14 36 2
|
scafval |
⊢ ( ( 𝐴 ∈ ( Base ‘ 𝐹 ) ∧ 𝐵 ∈ ( Base ‘ 𝑊 ) ) → ( 𝐴 ( ·sf ‘ 𝑊 ) 𝐵 ) = ( 𝐴 · 𝐵 ) ) |
| 38 |
23 35 37
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑌 ) → ( 𝐴 ( ·sf ‘ 𝑊 ) 𝐵 ) = ( 𝐴 · 𝐵 ) ) |
| 39 |
38
|
3impa |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) → ( 𝐴 ( ·sf ‘ 𝑊 ) 𝐵 ) = ( 𝐴 · 𝐵 ) ) |
| 40 |
39
|
mpoeq3dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ ( 𝐴 ( ·sf ‘ 𝑊 ) 𝐵 ) ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ ( 𝐴 · 𝐵 ) ) ) |
| 41 |
36 3 1 4
|
vscacn |
⊢ ( 𝑊 ∈ TopMod → ( ·sf ‘ 𝑊 ) ∈ ( ( 𝐾 ×t 𝐽 ) Cn 𝐽 ) ) |
| 42 |
5 41
|
syl |
⊢ ( 𝜑 → ( ·sf ‘ 𝑊 ) ∈ ( ( 𝐾 ×t 𝐽 ) Cn 𝐽 ) ) |
| 43 |
6 7 8 9 42
|
cnmpt22f |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ ( 𝐴 ( ·sf ‘ 𝑊 ) 𝐵 ) ) ∈ ( ( 𝐿 ×t 𝑀 ) Cn 𝐽 ) ) |
| 44 |
40 43
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ ( 𝐴 · 𝐵 ) ) ∈ ( ( 𝐿 ×t 𝑀 ) Cn 𝐽 ) ) |