Step |
Hyp |
Ref |
Expression |
1 |
|
plycj.1 |
⊢ 𝑁 = ( deg ‘ 𝐹 ) |
2 |
|
plycj.2 |
⊢ 𝐺 = ( ( ∗ ∘ 𝐹 ) ∘ ∗ ) |
3 |
|
coecj.3 |
⊢ 𝐴 = ( coeff ‘ 𝐹 ) |
4 |
|
cjcl |
⊢ ( 𝑥 ∈ ℂ → ( ∗ ‘ 𝑥 ) ∈ ℂ ) |
5 |
4
|
adantl |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑥 ∈ ℂ ) → ( ∗ ‘ 𝑥 ) ∈ ℂ ) |
6 |
|
plyssc |
⊢ ( Poly ‘ 𝑆 ) ⊆ ( Poly ‘ ℂ ) |
7 |
6
|
sseli |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 𝐹 ∈ ( Poly ‘ ℂ ) ) |
8 |
1 2 5 7
|
plycj |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 𝐺 ∈ ( Poly ‘ ℂ ) ) |
9 |
|
dgrcl |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ( deg ‘ 𝐹 ) ∈ ℕ0 ) |
10 |
1 9
|
eqeltrid |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 𝑁 ∈ ℕ0 ) |
11 |
|
cjf |
⊢ ∗ : ℂ ⟶ ℂ |
12 |
3
|
coef3 |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 𝐴 : ℕ0 ⟶ ℂ ) |
13 |
|
fco |
⊢ ( ( ∗ : ℂ ⟶ ℂ ∧ 𝐴 : ℕ0 ⟶ ℂ ) → ( ∗ ∘ 𝐴 ) : ℕ0 ⟶ ℂ ) |
14 |
11 12 13
|
sylancr |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ( ∗ ∘ 𝐴 ) : ℕ0 ⟶ ℂ ) |
15 |
|
fvco3 |
⊢ ( ( 𝐴 : ℕ0 ⟶ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( ∗ ∘ 𝐴 ) ‘ 𝑘 ) = ( ∗ ‘ ( 𝐴 ‘ 𝑘 ) ) ) |
16 |
12 15
|
sylan |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ∗ ∘ 𝐴 ) ‘ 𝑘 ) = ( ∗ ‘ ( 𝐴 ‘ 𝑘 ) ) ) |
17 |
|
cj0 |
⊢ ( ∗ ‘ 0 ) = 0 |
18 |
17
|
eqcomi |
⊢ 0 = ( ∗ ‘ 0 ) |
19 |
18
|
a1i |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑘 ∈ ℕ0 ) → 0 = ( ∗ ‘ 0 ) ) |
20 |
16 19
|
eqeq12d |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( ∗ ∘ 𝐴 ) ‘ 𝑘 ) = 0 ↔ ( ∗ ‘ ( 𝐴 ‘ 𝑘 ) ) = ( ∗ ‘ 0 ) ) ) |
21 |
12
|
ffvelrnda |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑘 ) ∈ ℂ ) |
22 |
|
0cnd |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑘 ∈ ℕ0 ) → 0 ∈ ℂ ) |
23 |
|
cj11 |
⊢ ( ( ( 𝐴 ‘ 𝑘 ) ∈ ℂ ∧ 0 ∈ ℂ ) → ( ( ∗ ‘ ( 𝐴 ‘ 𝑘 ) ) = ( ∗ ‘ 0 ) ↔ ( 𝐴 ‘ 𝑘 ) = 0 ) ) |
24 |
21 22 23
|
syl2anc |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ∗ ‘ ( 𝐴 ‘ 𝑘 ) ) = ( ∗ ‘ 0 ) ↔ ( 𝐴 ‘ 𝑘 ) = 0 ) ) |
25 |
20 24
|
bitrd |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( ∗ ∘ 𝐴 ) ‘ 𝑘 ) = 0 ↔ ( 𝐴 ‘ 𝑘 ) = 0 ) ) |
26 |
25
|
necon3bid |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( ∗ ∘ 𝐴 ) ‘ 𝑘 ) ≠ 0 ↔ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) ) |
27 |
3 1
|
dgrub2 |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ( 𝐴 “ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) = { 0 } ) |
28 |
|
plyco0 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ ℂ ) → ( ( 𝐴 “ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) = { 0 } ↔ ∀ 𝑘 ∈ ℕ0 ( ( 𝐴 ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ 𝑁 ) ) ) |
29 |
10 12 28
|
syl2anc |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ( ( 𝐴 “ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) = { 0 } ↔ ∀ 𝑘 ∈ ℕ0 ( ( 𝐴 ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ 𝑁 ) ) ) |
30 |
27 29
|
mpbid |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ∀ 𝑘 ∈ ℕ0 ( ( 𝐴 ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ 𝑁 ) ) |
31 |
30
|
r19.21bi |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ 𝑁 ) ) |
32 |
26 31
|
sylbid |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( ∗ ∘ 𝐴 ) ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ 𝑁 ) ) |
33 |
32
|
ralrimiva |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ∀ 𝑘 ∈ ℕ0 ( ( ( ∗ ∘ 𝐴 ) ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ 𝑁 ) ) |
34 |
|
plyco0 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( ∗ ∘ 𝐴 ) : ℕ0 ⟶ ℂ ) → ( ( ( ∗ ∘ 𝐴 ) “ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) = { 0 } ↔ ∀ 𝑘 ∈ ℕ0 ( ( ( ∗ ∘ 𝐴 ) ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ 𝑁 ) ) ) |
35 |
10 14 34
|
syl2anc |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ( ( ( ∗ ∘ 𝐴 ) “ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) = { 0 } ↔ ∀ 𝑘 ∈ ℕ0 ( ( ( ∗ ∘ 𝐴 ) ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ 𝑁 ) ) ) |
36 |
33 35
|
mpbird |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ( ( ∗ ∘ 𝐴 ) “ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) = { 0 } ) |
37 |
1 2 3
|
plycjlem |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 𝐺 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( ∗ ∘ 𝐴 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
38 |
8 10 14 36 37
|
coeeq |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ( coeff ‘ 𝐺 ) = ( ∗ ∘ 𝐴 ) ) |