Step |
Hyp |
Ref |
Expression |
1 |
|
plycj.2 |
⊢ 𝐺 = ( ( ∗ ∘ 𝐹 ) ∘ ∗ ) |
2 |
|
coecj.3 |
⊢ 𝐴 = ( coeff ‘ 𝐹 ) |
3 |
|
cjcl |
⊢ ( 𝑥 ∈ ℂ → ( ∗ ‘ 𝑥 ) ∈ ℂ ) |
4 |
3
|
adantl |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑥 ∈ ℂ ) → ( ∗ ‘ 𝑥 ) ∈ ℂ ) |
5 |
|
plyssc |
⊢ ( Poly ‘ 𝑆 ) ⊆ ( Poly ‘ ℂ ) |
6 |
5
|
sseli |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 𝐹 ∈ ( Poly ‘ ℂ ) ) |
7 |
1 4 6
|
plycj |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 𝐺 ∈ ( Poly ‘ ℂ ) ) |
8 |
|
dgrcl |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ( deg ‘ 𝐹 ) ∈ ℕ0 ) |
9 |
|
cjf |
⊢ ∗ : ℂ ⟶ ℂ |
10 |
2
|
coef3 |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 𝐴 : ℕ0 ⟶ ℂ ) |
11 |
|
fco |
⊢ ( ( ∗ : ℂ ⟶ ℂ ∧ 𝐴 : ℕ0 ⟶ ℂ ) → ( ∗ ∘ 𝐴 ) : ℕ0 ⟶ ℂ ) |
12 |
9 10 11
|
sylancr |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ( ∗ ∘ 𝐴 ) : ℕ0 ⟶ ℂ ) |
13 |
|
fvco3 |
⊢ ( ( 𝐴 : ℕ0 ⟶ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( ∗ ∘ 𝐴 ) ‘ 𝑘 ) = ( ∗ ‘ ( 𝐴 ‘ 𝑘 ) ) ) |
14 |
10 13
|
sylan |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ∗ ∘ 𝐴 ) ‘ 𝑘 ) = ( ∗ ‘ ( 𝐴 ‘ 𝑘 ) ) ) |
15 |
|
cj0 |
⊢ ( ∗ ‘ 0 ) = 0 |
16 |
15
|
eqcomi |
⊢ 0 = ( ∗ ‘ 0 ) |
17 |
16
|
a1i |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑘 ∈ ℕ0 ) → 0 = ( ∗ ‘ 0 ) ) |
18 |
14 17
|
eqeq12d |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( ∗ ∘ 𝐴 ) ‘ 𝑘 ) = 0 ↔ ( ∗ ‘ ( 𝐴 ‘ 𝑘 ) ) = ( ∗ ‘ 0 ) ) ) |
19 |
10
|
ffvelcdmda |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑘 ) ∈ ℂ ) |
20 |
|
0cnd |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑘 ∈ ℕ0 ) → 0 ∈ ℂ ) |
21 |
|
cj11 |
⊢ ( ( ( 𝐴 ‘ 𝑘 ) ∈ ℂ ∧ 0 ∈ ℂ ) → ( ( ∗ ‘ ( 𝐴 ‘ 𝑘 ) ) = ( ∗ ‘ 0 ) ↔ ( 𝐴 ‘ 𝑘 ) = 0 ) ) |
22 |
19 20 21
|
syl2anc |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ∗ ‘ ( 𝐴 ‘ 𝑘 ) ) = ( ∗ ‘ 0 ) ↔ ( 𝐴 ‘ 𝑘 ) = 0 ) ) |
23 |
18 22
|
bitrd |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( ∗ ∘ 𝐴 ) ‘ 𝑘 ) = 0 ↔ ( 𝐴 ‘ 𝑘 ) = 0 ) ) |
24 |
23
|
necon3bid |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( ∗ ∘ 𝐴 ) ‘ 𝑘 ) ≠ 0 ↔ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) ) |
25 |
|
eqid |
⊢ ( deg ‘ 𝐹 ) = ( deg ‘ 𝐹 ) |
26 |
2 25
|
dgrub2 |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ( 𝐴 “ ( ℤ≥ ‘ ( ( deg ‘ 𝐹 ) + 1 ) ) ) = { 0 } ) |
27 |
|
plyco0 |
⊢ ( ( ( deg ‘ 𝐹 ) ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ ℂ ) → ( ( 𝐴 “ ( ℤ≥ ‘ ( ( deg ‘ 𝐹 ) + 1 ) ) ) = { 0 } ↔ ∀ 𝑘 ∈ ℕ0 ( ( 𝐴 ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ ( deg ‘ 𝐹 ) ) ) ) |
28 |
8 10 27
|
syl2anc |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ( ( 𝐴 “ ( ℤ≥ ‘ ( ( deg ‘ 𝐹 ) + 1 ) ) ) = { 0 } ↔ ∀ 𝑘 ∈ ℕ0 ( ( 𝐴 ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ ( deg ‘ 𝐹 ) ) ) ) |
29 |
26 28
|
mpbid |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ∀ 𝑘 ∈ ℕ0 ( ( 𝐴 ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ ( deg ‘ 𝐹 ) ) ) |
30 |
29
|
r19.21bi |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ ( deg ‘ 𝐹 ) ) ) |
31 |
24 30
|
sylbid |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( ∗ ∘ 𝐴 ) ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ ( deg ‘ 𝐹 ) ) ) |
32 |
31
|
ralrimiva |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ∀ 𝑘 ∈ ℕ0 ( ( ( ∗ ∘ 𝐴 ) ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ ( deg ‘ 𝐹 ) ) ) |
33 |
|
plyco0 |
⊢ ( ( ( deg ‘ 𝐹 ) ∈ ℕ0 ∧ ( ∗ ∘ 𝐴 ) : ℕ0 ⟶ ℂ ) → ( ( ( ∗ ∘ 𝐴 ) “ ( ℤ≥ ‘ ( ( deg ‘ 𝐹 ) + 1 ) ) ) = { 0 } ↔ ∀ 𝑘 ∈ ℕ0 ( ( ( ∗ ∘ 𝐴 ) ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ ( deg ‘ 𝐹 ) ) ) ) |
34 |
8 12 33
|
syl2anc |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ( ( ( ∗ ∘ 𝐴 ) “ ( ℤ≥ ‘ ( ( deg ‘ 𝐹 ) + 1 ) ) ) = { 0 } ↔ ∀ 𝑘 ∈ ℕ0 ( ( ( ∗ ∘ 𝐴 ) ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ ( deg ‘ 𝐹 ) ) ) ) |
35 |
32 34
|
mpbird |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ( ( ∗ ∘ 𝐴 ) “ ( ℤ≥ ‘ ( ( deg ‘ 𝐹 ) + 1 ) ) ) = { 0 } ) |
36 |
25 1 2
|
plycjlem |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 𝐺 = ( 𝑦 ∈ ℂ ↦ Σ 𝑧 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ( ( ( ∗ ∘ 𝐴 ) ‘ 𝑧 ) · ( 𝑦 ↑ 𝑧 ) ) ) ) |
37 |
7 8 12 35 36
|
coeeq |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ( coeff ‘ 𝐺 ) = ( ∗ ∘ 𝐴 ) ) |