Metamath Proof Explorer


Theorem cofidf1a

Description: If " F is a section of G " in a category of small categories (in a universe), then the object part of F is injective, and the object part of G is surjective. (Contributed by Zhi Wang, 15-Nov-2025)

Ref Expression
Hypotheses cofidvala.i 𝐼 = ( idfunc𝐷 )
cofidvala.b 𝐵 = ( Base ‘ 𝐷 )
cofidvala.f ( 𝜑𝐹 ∈ ( 𝐷 Func 𝐸 ) )
cofidvala.g ( 𝜑𝐺 ∈ ( 𝐸 Func 𝐷 ) )
cofidvala.o ( 𝜑 → ( 𝐺func 𝐹 ) = 𝐼 )
cofidf1a.c 𝐶 = ( Base ‘ 𝐸 )
Assertion cofidf1a ( 𝜑 → ( ( 1st𝐹 ) : 𝐵1-1𝐶 ∧ ( 1st𝐺 ) : 𝐶onto𝐵 ) )

Proof

Step Hyp Ref Expression
1 cofidvala.i 𝐼 = ( idfunc𝐷 )
2 cofidvala.b 𝐵 = ( Base ‘ 𝐷 )
3 cofidvala.f ( 𝜑𝐹 ∈ ( 𝐷 Func 𝐸 ) )
4 cofidvala.g ( 𝜑𝐺 ∈ ( 𝐸 Func 𝐷 ) )
5 cofidvala.o ( 𝜑 → ( 𝐺func 𝐹 ) = 𝐼 )
6 cofidf1a.c 𝐶 = ( Base ‘ 𝐸 )
7 3 func1st2nd ( 𝜑 → ( 1st𝐹 ) ( 𝐷 Func 𝐸 ) ( 2nd𝐹 ) )
8 2 6 7 funcf1 ( 𝜑 → ( 1st𝐹 ) : 𝐵𝐶 )
9 eqid ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 )
10 1 2 3 4 5 9 cofidvala ( 𝜑 → ( ( ( 1st𝐺 ) ∘ ( 1st𝐹 ) ) = ( I ↾ 𝐵 ) ∧ ( 𝑥𝐵 , 𝑦𝐵 ↦ ( ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( 2nd𝐺 ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) ∘ ( 𝑥 ( 2nd𝐹 ) 𝑦 ) ) ) = ( 𝑧 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( ( Hom ‘ 𝐷 ) ‘ 𝑧 ) ) ) ) )
11 10 simpld ( 𝜑 → ( ( 1st𝐺 ) ∘ ( 1st𝐹 ) ) = ( I ↾ 𝐵 ) )
12 fcof1 ( ( ( 1st𝐹 ) : 𝐵𝐶 ∧ ( ( 1st𝐺 ) ∘ ( 1st𝐹 ) ) = ( I ↾ 𝐵 ) ) → ( 1st𝐹 ) : 𝐵1-1𝐶 )
13 8 11 12 syl2anc ( 𝜑 → ( 1st𝐹 ) : 𝐵1-1𝐶 )
14 4 func1st2nd ( 𝜑 → ( 1st𝐺 ) ( 𝐸 Func 𝐷 ) ( 2nd𝐺 ) )
15 6 2 14 funcf1 ( 𝜑 → ( 1st𝐺 ) : 𝐶𝐵 )
16 fcofo ( ( ( 1st𝐺 ) : 𝐶𝐵 ∧ ( 1st𝐹 ) : 𝐵𝐶 ∧ ( ( 1st𝐺 ) ∘ ( 1st𝐹 ) ) = ( I ↾ 𝐵 ) ) → ( 1st𝐺 ) : 𝐶onto𝐵 )
17 15 8 11 16 syl3anc ( 𝜑 → ( 1st𝐺 ) : 𝐶onto𝐵 )
18 13 17 jca ( 𝜑 → ( ( 1st𝐹 ) : 𝐵1-1𝐶 ∧ ( 1st𝐺 ) : 𝐶onto𝐵 ) )