Metamath Proof Explorer


Theorem cofidf1a

Description: If " F is a section of G " in a category of small categories (in a universe), then the object part of F is injective, and the object part of G is surjective. (Contributed by Zhi Wang, 15-Nov-2025)

Ref Expression
Hypotheses cofidvala.i I = id func D
cofidvala.b B = Base D
cofidvala.f φ F D Func E
cofidvala.g φ G E Func D
cofidvala.o φ G func F = I
cofidf1a.c C = Base E
Assertion cofidf1a φ 1 st F : B 1-1 C 1 st G : C onto B

Proof

Step Hyp Ref Expression
1 cofidvala.i I = id func D
2 cofidvala.b B = Base D
3 cofidvala.f φ F D Func E
4 cofidvala.g φ G E Func D
5 cofidvala.o φ G func F = I
6 cofidf1a.c C = Base E
7 3 func1st2nd φ 1 st F D Func E 2 nd F
8 2 6 7 funcf1 φ 1 st F : B C
9 eqid Hom D = Hom D
10 1 2 3 4 5 9 cofidvala φ 1 st G 1 st F = I B x B , y B 1 st F x 2 nd G 1 st F y x 2 nd F y = z B × B I Hom D z
11 10 simpld φ 1 st G 1 st F = I B
12 fcof1 1 st F : B C 1 st G 1 st F = I B 1 st F : B 1-1 C
13 8 11 12 syl2anc φ 1 st F : B 1-1 C
14 4 func1st2nd φ 1 st G E Func D 2 nd G
15 6 2 14 funcf1 φ 1 st G : C B
16 fcofo 1 st G : C B 1 st F : B C 1 st G 1 st F = I B 1 st G : C onto B
17 15 8 11 16 syl3anc φ 1 st G : C onto B
18 13 17 jca φ 1 st F : B 1-1 C 1 st G : C onto B