| Step | Hyp | Ref | Expression | 
						
							| 1 |  | coinflip.h | ⊢ 𝐻  ∈  V | 
						
							| 2 |  | coinflip.t | ⊢ 𝑇  ∈  V | 
						
							| 3 |  | coinflip.th | ⊢ 𝐻  ≠  𝑇 | 
						
							| 4 |  | coinflip.2 | ⊢ 𝑃  =  ( ( ♯  ↾  𝒫  { 𝐻 ,  𝑇 } )  ∘f/c   /  2 ) | 
						
							| 5 |  | coinflip.3 | ⊢ 𝑋  =  { 〈 𝐻 ,  1 〉 ,  〈 𝑇 ,  0 〉 } | 
						
							| 6 | 1 2 3 4 5 | coinflipprob | ⊢ 𝑃  ∈  Prob | 
						
							| 7 | 1 | prid1 | ⊢ 𝐻  ∈  { 𝐻 ,  𝑇 } | 
						
							| 8 |  | snelpwi | ⊢ ( 𝐻  ∈  { 𝐻 ,  𝑇 }  →  { 𝐻 }  ∈  𝒫  { 𝐻 ,  𝑇 } ) | 
						
							| 9 | 7 8 | ax-mp | ⊢ { 𝐻 }  ∈  𝒫  { 𝐻 ,  𝑇 } | 
						
							| 10 | 1 2 3 4 5 | coinflipspace | ⊢ dom  𝑃  =  𝒫  { 𝐻 ,  𝑇 } | 
						
							| 11 | 9 10 | eleqtrri | ⊢ { 𝐻 }  ∈  dom  𝑃 | 
						
							| 12 |  | probdsb | ⊢ ( ( 𝑃  ∈  Prob  ∧  { 𝐻 }  ∈  dom  𝑃 )  →  ( 𝑃 ‘ ( ∪  dom  𝑃  ∖  { 𝐻 } ) )  =  ( 1  −  ( 𝑃 ‘ { 𝐻 } ) ) ) | 
						
							| 13 | 6 11 12 | mp2an | ⊢ ( 𝑃 ‘ ( ∪  dom  𝑃  ∖  { 𝐻 } ) )  =  ( 1  −  ( 𝑃 ‘ { 𝐻 } ) ) | 
						
							| 14 | 1 2 3 4 5 | coinflipuniv | ⊢ ∪  dom  𝑃  =  { 𝐻 ,  𝑇 } | 
						
							| 15 | 14 | difeq1i | ⊢ ( ∪  dom  𝑃  ∖  { 𝐻 } )  =  ( { 𝐻 ,  𝑇 }  ∖  { 𝐻 } ) | 
						
							| 16 |  | difprsn1 | ⊢ ( 𝐻  ≠  𝑇  →  ( { 𝐻 ,  𝑇 }  ∖  { 𝐻 } )  =  { 𝑇 } ) | 
						
							| 17 | 3 16 | ax-mp | ⊢ ( { 𝐻 ,  𝑇 }  ∖  { 𝐻 } )  =  { 𝑇 } | 
						
							| 18 | 15 17 | eqtri | ⊢ ( ∪  dom  𝑃  ∖  { 𝐻 } )  =  { 𝑇 } | 
						
							| 19 | 18 | fveq2i | ⊢ ( 𝑃 ‘ ( ∪  dom  𝑃  ∖  { 𝐻 } ) )  =  ( 𝑃 ‘ { 𝑇 } ) | 
						
							| 20 | 1 2 3 4 5 | coinflippv | ⊢ ( 𝑃 ‘ { 𝐻 } )  =  ( 1  /  2 ) | 
						
							| 21 | 20 | oveq2i | ⊢ ( 1  −  ( 𝑃 ‘ { 𝐻 } ) )  =  ( 1  −  ( 1  /  2 ) ) | 
						
							| 22 | 13 19 21 | 3eqtr3i | ⊢ ( 𝑃 ‘ { 𝑇 } )  =  ( 1  −  ( 1  /  2 ) ) | 
						
							| 23 |  | 1mhlfehlf | ⊢ ( 1  −  ( 1  /  2 ) )  =  ( 1  /  2 ) | 
						
							| 24 | 22 23 | eqtri | ⊢ ( 𝑃 ‘ { 𝑇 } )  =  ( 1  /  2 ) |