Step |
Hyp |
Ref |
Expression |
1 |
|
coinflip.h |
⊢ 𝐻 ∈ V |
2 |
|
coinflip.t |
⊢ 𝑇 ∈ V |
3 |
|
coinflip.th |
⊢ 𝐻 ≠ 𝑇 |
4 |
|
coinflip.2 |
⊢ 𝑃 = ( ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ∘f/c / 2 ) |
5 |
|
coinflip.3 |
⊢ 𝑋 = { 〈 𝐻 , 1 〉 , 〈 𝑇 , 0 〉 } |
6 |
1 2 3 4 5
|
coinflipprob |
⊢ 𝑃 ∈ Prob |
7 |
1
|
prid1 |
⊢ 𝐻 ∈ { 𝐻 , 𝑇 } |
8 |
|
snelpwi |
⊢ ( 𝐻 ∈ { 𝐻 , 𝑇 } → { 𝐻 } ∈ 𝒫 { 𝐻 , 𝑇 } ) |
9 |
7 8
|
ax-mp |
⊢ { 𝐻 } ∈ 𝒫 { 𝐻 , 𝑇 } |
10 |
1 2 3 4 5
|
coinflipspace |
⊢ dom 𝑃 = 𝒫 { 𝐻 , 𝑇 } |
11 |
9 10
|
eleqtrri |
⊢ { 𝐻 } ∈ dom 𝑃 |
12 |
|
probdsb |
⊢ ( ( 𝑃 ∈ Prob ∧ { 𝐻 } ∈ dom 𝑃 ) → ( 𝑃 ‘ ( ∪ dom 𝑃 ∖ { 𝐻 } ) ) = ( 1 − ( 𝑃 ‘ { 𝐻 } ) ) ) |
13 |
6 11 12
|
mp2an |
⊢ ( 𝑃 ‘ ( ∪ dom 𝑃 ∖ { 𝐻 } ) ) = ( 1 − ( 𝑃 ‘ { 𝐻 } ) ) |
14 |
1 2 3 4 5
|
coinflipuniv |
⊢ ∪ dom 𝑃 = { 𝐻 , 𝑇 } |
15 |
14
|
difeq1i |
⊢ ( ∪ dom 𝑃 ∖ { 𝐻 } ) = ( { 𝐻 , 𝑇 } ∖ { 𝐻 } ) |
16 |
|
difprsn1 |
⊢ ( 𝐻 ≠ 𝑇 → ( { 𝐻 , 𝑇 } ∖ { 𝐻 } ) = { 𝑇 } ) |
17 |
3 16
|
ax-mp |
⊢ ( { 𝐻 , 𝑇 } ∖ { 𝐻 } ) = { 𝑇 } |
18 |
15 17
|
eqtri |
⊢ ( ∪ dom 𝑃 ∖ { 𝐻 } ) = { 𝑇 } |
19 |
18
|
fveq2i |
⊢ ( 𝑃 ‘ ( ∪ dom 𝑃 ∖ { 𝐻 } ) ) = ( 𝑃 ‘ { 𝑇 } ) |
20 |
1 2 3 4 5
|
coinflippv |
⊢ ( 𝑃 ‘ { 𝐻 } ) = ( 1 / 2 ) |
21 |
20
|
oveq2i |
⊢ ( 1 − ( 𝑃 ‘ { 𝐻 } ) ) = ( 1 − ( 1 / 2 ) ) |
22 |
13 19 21
|
3eqtr3i |
⊢ ( 𝑃 ‘ { 𝑇 } ) = ( 1 − ( 1 / 2 ) ) |
23 |
|
1mhlfehlf |
⊢ ( 1 − ( 1 / 2 ) ) = ( 1 / 2 ) |
24 |
22 23
|
eqtri |
⊢ ( 𝑃 ‘ { 𝑇 } ) = ( 1 / 2 ) |