Metamath Proof Explorer


Theorem coinflippvt

Description: The probability of tails is one-half. (Contributed by Thierry Arnoux, 5-Feb-2017)

Ref Expression
Hypotheses coinflip.h 𝐻 ∈ V
coinflip.t 𝑇 ∈ V
coinflip.th 𝐻𝑇
coinflip.2 𝑃 = ( ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ∘f/c / 2 )
coinflip.3 𝑋 = { ⟨ 𝐻 , 1 ⟩ , ⟨ 𝑇 , 0 ⟩ }
Assertion coinflippvt ( 𝑃 ‘ { 𝑇 } ) = ( 1 / 2 )

Proof

Step Hyp Ref Expression
1 coinflip.h 𝐻 ∈ V
2 coinflip.t 𝑇 ∈ V
3 coinflip.th 𝐻𝑇
4 coinflip.2 𝑃 = ( ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ∘f/c / 2 )
5 coinflip.3 𝑋 = { ⟨ 𝐻 , 1 ⟩ , ⟨ 𝑇 , 0 ⟩ }
6 1 2 3 4 5 coinflipprob 𝑃 ∈ Prob
7 1 prid1 𝐻 ∈ { 𝐻 , 𝑇 }
8 snelpwi ( 𝐻 ∈ { 𝐻 , 𝑇 } → { 𝐻 } ∈ 𝒫 { 𝐻 , 𝑇 } )
9 7 8 ax-mp { 𝐻 } ∈ 𝒫 { 𝐻 , 𝑇 }
10 1 2 3 4 5 coinflipspace dom 𝑃 = 𝒫 { 𝐻 , 𝑇 }
11 9 10 eleqtrri { 𝐻 } ∈ dom 𝑃
12 probdsb ( ( 𝑃 ∈ Prob ∧ { 𝐻 } ∈ dom 𝑃 ) → ( 𝑃 ‘ ( dom 𝑃 ∖ { 𝐻 } ) ) = ( 1 − ( 𝑃 ‘ { 𝐻 } ) ) )
13 6 11 12 mp2an ( 𝑃 ‘ ( dom 𝑃 ∖ { 𝐻 } ) ) = ( 1 − ( 𝑃 ‘ { 𝐻 } ) )
14 1 2 3 4 5 coinflipuniv dom 𝑃 = { 𝐻 , 𝑇 }
15 14 difeq1i ( dom 𝑃 ∖ { 𝐻 } ) = ( { 𝐻 , 𝑇 } ∖ { 𝐻 } )
16 difprsn1 ( 𝐻𝑇 → ( { 𝐻 , 𝑇 } ∖ { 𝐻 } ) = { 𝑇 } )
17 3 16 ax-mp ( { 𝐻 , 𝑇 } ∖ { 𝐻 } ) = { 𝑇 }
18 15 17 eqtri ( dom 𝑃 ∖ { 𝐻 } ) = { 𝑇 }
19 18 fveq2i ( 𝑃 ‘ ( dom 𝑃 ∖ { 𝐻 } ) ) = ( 𝑃 ‘ { 𝑇 } )
20 1 2 3 4 5 coinflippv ( 𝑃 ‘ { 𝐻 } ) = ( 1 / 2 )
21 20 oveq2i ( 1 − ( 𝑃 ‘ { 𝐻 } ) ) = ( 1 − ( 1 / 2 ) )
22 13 19 21 3eqtr3i ( 𝑃 ‘ { 𝑇 } ) = ( 1 − ( 1 / 2 ) )
23 1mhlfehlf ( 1 − ( 1 / 2 ) ) = ( 1 / 2 )
24 22 23 eqtri ( 𝑃 ‘ { 𝑇 } ) = ( 1 / 2 )