| Step | Hyp | Ref | Expression | 
						
							| 1 |  | coinflip.h | ⊢ 𝐻  ∈  V | 
						
							| 2 |  | coinflip.t | ⊢ 𝑇  ∈  V | 
						
							| 3 |  | coinflip.th | ⊢ 𝐻  ≠  𝑇 | 
						
							| 4 |  | coinflip.2 | ⊢ 𝑃  =  ( ( ♯  ↾  𝒫  { 𝐻 ,  𝑇 } )  ∘f/c   /  2 ) | 
						
							| 5 |  | coinflip.3 | ⊢ 𝑋  =  { 〈 𝐻 ,  1 〉 ,  〈 𝑇 ,  0 〉 } | 
						
							| 6 | 4 | fveq1i | ⊢ ( 𝑃 ‘ { 𝐻 } )  =  ( ( ( ♯  ↾  𝒫  { 𝐻 ,  𝑇 } )  ∘f/c   /  2 ) ‘ { 𝐻 } ) | 
						
							| 7 |  | snsspr1 | ⊢ { 𝐻 }  ⊆  { 𝐻 ,  𝑇 } | 
						
							| 8 |  | prex | ⊢ { 𝐻 ,  𝑇 }  ∈  V | 
						
							| 9 | 8 | elpw2 | ⊢ ( { 𝐻 }  ∈  𝒫  { 𝐻 ,  𝑇 }  ↔  { 𝐻 }  ⊆  { 𝐻 ,  𝑇 } ) | 
						
							| 10 | 9 | biimpri | ⊢ ( { 𝐻 }  ⊆  { 𝐻 ,  𝑇 }  →  { 𝐻 }  ∈  𝒫  { 𝐻 ,  𝑇 } ) | 
						
							| 11 |  | fveq2 | ⊢ ( 𝑥  =  { 𝐻 }  →  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ { 𝐻 } ) ) | 
						
							| 12 |  | hashsng | ⊢ ( 𝐻  ∈  V  →  ( ♯ ‘ { 𝐻 } )  =  1 ) | 
						
							| 13 | 1 12 | ax-mp | ⊢ ( ♯ ‘ { 𝐻 } )  =  1 | 
						
							| 14 | 11 13 | eqtrdi | ⊢ ( 𝑥  =  { 𝐻 }  →  ( ♯ ‘ 𝑥 )  =  1 ) | 
						
							| 15 | 14 | oveq1d | ⊢ ( 𝑥  =  { 𝐻 }  →  ( ( ♯ ‘ 𝑥 )  /  2 )  =  ( 1  /  2 ) ) | 
						
							| 16 | 8 | pwex | ⊢ 𝒫  { 𝐻 ,  𝑇 }  ∈  V | 
						
							| 17 | 16 | a1i | ⊢ ( 𝐻  ∈  V  →  𝒫  { 𝐻 ,  𝑇 }  ∈  V ) | 
						
							| 18 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 19 | 18 | a1i | ⊢ ( 𝐻  ∈  V  →  2  ∈  ℕ0 ) | 
						
							| 20 |  | prfi | ⊢ { 𝐻 ,  𝑇 }  ∈  Fin | 
						
							| 21 |  | elpwi | ⊢ ( 𝑥  ∈  𝒫  { 𝐻 ,  𝑇 }  →  𝑥  ⊆  { 𝐻 ,  𝑇 } ) | 
						
							| 22 |  | ssfi | ⊢ ( ( { 𝐻 ,  𝑇 }  ∈  Fin  ∧  𝑥  ⊆  { 𝐻 ,  𝑇 } )  →  𝑥  ∈  Fin ) | 
						
							| 23 | 20 21 22 | sylancr | ⊢ ( 𝑥  ∈  𝒫  { 𝐻 ,  𝑇 }  →  𝑥  ∈  Fin ) | 
						
							| 24 | 23 | adantl | ⊢ ( ( 𝐻  ∈  V  ∧  𝑥  ∈  𝒫  { 𝐻 ,  𝑇 } )  →  𝑥  ∈  Fin ) | 
						
							| 25 |  | hashcl | ⊢ ( 𝑥  ∈  Fin  →  ( ♯ ‘ 𝑥 )  ∈  ℕ0 ) | 
						
							| 26 | 24 25 | syl | ⊢ ( ( 𝐻  ∈  V  ∧  𝑥  ∈  𝒫  { 𝐻 ,  𝑇 } )  →  ( ♯ ‘ 𝑥 )  ∈  ℕ0 ) | 
						
							| 27 |  | hashf | ⊢ ♯ : V ⟶ ( ℕ0  ∪  { +∞ } ) | 
						
							| 28 | 27 | a1i | ⊢ ( 𝐻  ∈  V  →  ♯ : V ⟶ ( ℕ0  ∪  { +∞ } ) ) | 
						
							| 29 |  | ssv | ⊢ 𝒫  { 𝐻 ,  𝑇 }  ⊆  V | 
						
							| 30 | 29 | a1i | ⊢ ( 𝐻  ∈  V  →  𝒫  { 𝐻 ,  𝑇 }  ⊆  V ) | 
						
							| 31 | 28 30 | feqresmpt | ⊢ ( 𝐻  ∈  V  →  ( ♯  ↾  𝒫  { 𝐻 ,  𝑇 } )  =  ( 𝑥  ∈  𝒫  { 𝐻 ,  𝑇 }  ↦  ( ♯ ‘ 𝑥 ) ) ) | 
						
							| 32 | 17 19 26 31 | ofcfval2 | ⊢ ( 𝐻  ∈  V  →  ( ( ♯  ↾  𝒫  { 𝐻 ,  𝑇 } )  ∘f/c   /  2 )  =  ( 𝑥  ∈  𝒫  { 𝐻 ,  𝑇 }  ↦  ( ( ♯ ‘ 𝑥 )  /  2 ) ) ) | 
						
							| 33 | 1 32 | ax-mp | ⊢ ( ( ♯  ↾  𝒫  { 𝐻 ,  𝑇 } )  ∘f/c   /  2 )  =  ( 𝑥  ∈  𝒫  { 𝐻 ,  𝑇 }  ↦  ( ( ♯ ‘ 𝑥 )  /  2 ) ) | 
						
							| 34 |  | ovex | ⊢ ( 1  /  2 )  ∈  V | 
						
							| 35 | 15 33 34 | fvmpt | ⊢ ( { 𝐻 }  ∈  𝒫  { 𝐻 ,  𝑇 }  →  ( ( ( ♯  ↾  𝒫  { 𝐻 ,  𝑇 } )  ∘f/c   /  2 ) ‘ { 𝐻 } )  =  ( 1  /  2 ) ) | 
						
							| 36 | 7 10 35 | mp2b | ⊢ ( ( ( ♯  ↾  𝒫  { 𝐻 ,  𝑇 } )  ∘f/c   /  2 ) ‘ { 𝐻 } )  =  ( 1  /  2 ) | 
						
							| 37 | 6 36 | eqtri | ⊢ ( 𝑃 ‘ { 𝐻 } )  =  ( 1  /  2 ) |