Step |
Hyp |
Ref |
Expression |
1 |
|
coinflip.h |
⊢ 𝐻 ∈ V |
2 |
|
coinflip.t |
⊢ 𝑇 ∈ V |
3 |
|
coinflip.th |
⊢ 𝐻 ≠ 𝑇 |
4 |
|
coinflip.2 |
⊢ 𝑃 = ( ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ∘f/c / 2 ) |
5 |
|
coinflip.3 |
⊢ 𝑋 = { 〈 𝐻 , 1 〉 , 〈 𝑇 , 0 〉 } |
6 |
4
|
fveq1i |
⊢ ( 𝑃 ‘ { 𝐻 } ) = ( ( ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ∘f/c / 2 ) ‘ { 𝐻 } ) |
7 |
|
snsspr1 |
⊢ { 𝐻 } ⊆ { 𝐻 , 𝑇 } |
8 |
|
prex |
⊢ { 𝐻 , 𝑇 } ∈ V |
9 |
8
|
elpw2 |
⊢ ( { 𝐻 } ∈ 𝒫 { 𝐻 , 𝑇 } ↔ { 𝐻 } ⊆ { 𝐻 , 𝑇 } ) |
10 |
9
|
biimpri |
⊢ ( { 𝐻 } ⊆ { 𝐻 , 𝑇 } → { 𝐻 } ∈ 𝒫 { 𝐻 , 𝑇 } ) |
11 |
|
fveq2 |
⊢ ( 𝑥 = { 𝐻 } → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ { 𝐻 } ) ) |
12 |
|
hashsng |
⊢ ( 𝐻 ∈ V → ( ♯ ‘ { 𝐻 } ) = 1 ) |
13 |
1 12
|
ax-mp |
⊢ ( ♯ ‘ { 𝐻 } ) = 1 |
14 |
11 13
|
eqtrdi |
⊢ ( 𝑥 = { 𝐻 } → ( ♯ ‘ 𝑥 ) = 1 ) |
15 |
14
|
oveq1d |
⊢ ( 𝑥 = { 𝐻 } → ( ( ♯ ‘ 𝑥 ) / 2 ) = ( 1 / 2 ) ) |
16 |
8
|
pwex |
⊢ 𝒫 { 𝐻 , 𝑇 } ∈ V |
17 |
16
|
a1i |
⊢ ( 𝐻 ∈ V → 𝒫 { 𝐻 , 𝑇 } ∈ V ) |
18 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
19 |
18
|
a1i |
⊢ ( 𝐻 ∈ V → 2 ∈ ℕ0 ) |
20 |
|
prfi |
⊢ { 𝐻 , 𝑇 } ∈ Fin |
21 |
|
elpwi |
⊢ ( 𝑥 ∈ 𝒫 { 𝐻 , 𝑇 } → 𝑥 ⊆ { 𝐻 , 𝑇 } ) |
22 |
|
ssfi |
⊢ ( ( { 𝐻 , 𝑇 } ∈ Fin ∧ 𝑥 ⊆ { 𝐻 , 𝑇 } ) → 𝑥 ∈ Fin ) |
23 |
20 21 22
|
sylancr |
⊢ ( 𝑥 ∈ 𝒫 { 𝐻 , 𝑇 } → 𝑥 ∈ Fin ) |
24 |
23
|
adantl |
⊢ ( ( 𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 { 𝐻 , 𝑇 } ) → 𝑥 ∈ Fin ) |
25 |
|
hashcl |
⊢ ( 𝑥 ∈ Fin → ( ♯ ‘ 𝑥 ) ∈ ℕ0 ) |
26 |
24 25
|
syl |
⊢ ( ( 𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 { 𝐻 , 𝑇 } ) → ( ♯ ‘ 𝑥 ) ∈ ℕ0 ) |
27 |
|
hashf |
⊢ ♯ : V ⟶ ( ℕ0 ∪ { +∞ } ) |
28 |
27
|
a1i |
⊢ ( 𝐻 ∈ V → ♯ : V ⟶ ( ℕ0 ∪ { +∞ } ) ) |
29 |
|
ssv |
⊢ 𝒫 { 𝐻 , 𝑇 } ⊆ V |
30 |
29
|
a1i |
⊢ ( 𝐻 ∈ V → 𝒫 { 𝐻 , 𝑇 } ⊆ V ) |
31 |
28 30
|
feqresmpt |
⊢ ( 𝐻 ∈ V → ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) = ( 𝑥 ∈ 𝒫 { 𝐻 , 𝑇 } ↦ ( ♯ ‘ 𝑥 ) ) ) |
32 |
17 19 26 31
|
ofcfval2 |
⊢ ( 𝐻 ∈ V → ( ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ∘f/c / 2 ) = ( 𝑥 ∈ 𝒫 { 𝐻 , 𝑇 } ↦ ( ( ♯ ‘ 𝑥 ) / 2 ) ) ) |
33 |
1 32
|
ax-mp |
⊢ ( ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ∘f/c / 2 ) = ( 𝑥 ∈ 𝒫 { 𝐻 , 𝑇 } ↦ ( ( ♯ ‘ 𝑥 ) / 2 ) ) |
34 |
|
ovex |
⊢ ( 1 / 2 ) ∈ V |
35 |
15 33 34
|
fvmpt |
⊢ ( { 𝐻 } ∈ 𝒫 { 𝐻 , 𝑇 } → ( ( ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ∘f/c / 2 ) ‘ { 𝐻 } ) = ( 1 / 2 ) ) |
36 |
7 10 35
|
mp2b |
⊢ ( ( ( ♯ ↾ 𝒫 { 𝐻 , 𝑇 } ) ∘f/c / 2 ) ‘ { 𝐻 } ) = ( 1 / 2 ) |
37 |
6 36
|
eqtri |
⊢ ( 𝑃 ‘ { 𝐻 } ) = ( 1 / 2 ) |