| Step | Hyp | Ref | Expression | 
						
							| 1 |  | coinflip.h |  |-  H e. _V | 
						
							| 2 |  | coinflip.t |  |-  T e. _V | 
						
							| 3 |  | coinflip.th |  |-  H =/= T | 
						
							| 4 |  | coinflip.2 |  |-  P = ( ( # |` ~P { H , T } ) oFC / 2 ) | 
						
							| 5 |  | coinflip.3 |  |-  X = { <. H , 1 >. , <. T , 0 >. } | 
						
							| 6 | 4 | fveq1i |  |-  ( P ` { H } ) = ( ( ( # |` ~P { H , T } ) oFC / 2 ) ` { H } ) | 
						
							| 7 |  | snsspr1 |  |-  { H } C_ { H , T } | 
						
							| 8 |  | prex |  |-  { H , T } e. _V | 
						
							| 9 | 8 | elpw2 |  |-  ( { H } e. ~P { H , T } <-> { H } C_ { H , T } ) | 
						
							| 10 | 9 | biimpri |  |-  ( { H } C_ { H , T } -> { H } e. ~P { H , T } ) | 
						
							| 11 |  | fveq2 |  |-  ( x = { H } -> ( # ` x ) = ( # ` { H } ) ) | 
						
							| 12 |  | hashsng |  |-  ( H e. _V -> ( # ` { H } ) = 1 ) | 
						
							| 13 | 1 12 | ax-mp |  |-  ( # ` { H } ) = 1 | 
						
							| 14 | 11 13 | eqtrdi |  |-  ( x = { H } -> ( # ` x ) = 1 ) | 
						
							| 15 | 14 | oveq1d |  |-  ( x = { H } -> ( ( # ` x ) / 2 ) = ( 1 / 2 ) ) | 
						
							| 16 | 8 | pwex |  |-  ~P { H , T } e. _V | 
						
							| 17 | 16 | a1i |  |-  ( H e. _V -> ~P { H , T } e. _V ) | 
						
							| 18 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 19 | 18 | a1i |  |-  ( H e. _V -> 2 e. NN0 ) | 
						
							| 20 |  | prfi |  |-  { H , T } e. Fin | 
						
							| 21 |  | elpwi |  |-  ( x e. ~P { H , T } -> x C_ { H , T } ) | 
						
							| 22 |  | ssfi |  |-  ( ( { H , T } e. Fin /\ x C_ { H , T } ) -> x e. Fin ) | 
						
							| 23 | 20 21 22 | sylancr |  |-  ( x e. ~P { H , T } -> x e. Fin ) | 
						
							| 24 | 23 | adantl |  |-  ( ( H e. _V /\ x e. ~P { H , T } ) -> x e. Fin ) | 
						
							| 25 |  | hashcl |  |-  ( x e. Fin -> ( # ` x ) e. NN0 ) | 
						
							| 26 | 24 25 | syl |  |-  ( ( H e. _V /\ x e. ~P { H , T } ) -> ( # ` x ) e. NN0 ) | 
						
							| 27 |  | hashf |  |-  # : _V --> ( NN0 u. { +oo } ) | 
						
							| 28 | 27 | a1i |  |-  ( H e. _V -> # : _V --> ( NN0 u. { +oo } ) ) | 
						
							| 29 |  | ssv |  |-  ~P { H , T } C_ _V | 
						
							| 30 | 29 | a1i |  |-  ( H e. _V -> ~P { H , T } C_ _V ) | 
						
							| 31 | 28 30 | feqresmpt |  |-  ( H e. _V -> ( # |` ~P { H , T } ) = ( x e. ~P { H , T } |-> ( # ` x ) ) ) | 
						
							| 32 | 17 19 26 31 | ofcfval2 |  |-  ( H e. _V -> ( ( # |` ~P { H , T } ) oFC / 2 ) = ( x e. ~P { H , T } |-> ( ( # ` x ) / 2 ) ) ) | 
						
							| 33 | 1 32 | ax-mp |  |-  ( ( # |` ~P { H , T } ) oFC / 2 ) = ( x e. ~P { H , T } |-> ( ( # ` x ) / 2 ) ) | 
						
							| 34 |  | ovex |  |-  ( 1 / 2 ) e. _V | 
						
							| 35 | 15 33 34 | fvmpt |  |-  ( { H } e. ~P { H , T } -> ( ( ( # |` ~P { H , T } ) oFC / 2 ) ` { H } ) = ( 1 / 2 ) ) | 
						
							| 36 | 7 10 35 | mp2b |  |-  ( ( ( # |` ~P { H , T } ) oFC / 2 ) ` { H } ) = ( 1 / 2 ) | 
						
							| 37 | 6 36 | eqtri |  |-  ( P ` { H } ) = ( 1 / 2 ) |