| Step |
Hyp |
Ref |
Expression |
| 1 |
|
coinflip.h |
|- H e. _V |
| 2 |
|
coinflip.t |
|- T e. _V |
| 3 |
|
coinflip.th |
|- H =/= T |
| 4 |
|
coinflip.2 |
|- P = ( ( # |` ~P { H , T } ) oFC / 2 ) |
| 5 |
|
coinflip.3 |
|- X = { <. H , 1 >. , <. T , 0 >. } |
| 6 |
4
|
fveq1i |
|- ( P ` { H } ) = ( ( ( # |` ~P { H , T } ) oFC / 2 ) ` { H } ) |
| 7 |
|
snsspr1 |
|- { H } C_ { H , T } |
| 8 |
|
prex |
|- { H , T } e. _V |
| 9 |
8
|
elpw2 |
|- ( { H } e. ~P { H , T } <-> { H } C_ { H , T } ) |
| 10 |
9
|
biimpri |
|- ( { H } C_ { H , T } -> { H } e. ~P { H , T } ) |
| 11 |
|
fveq2 |
|- ( x = { H } -> ( # ` x ) = ( # ` { H } ) ) |
| 12 |
|
hashsng |
|- ( H e. _V -> ( # ` { H } ) = 1 ) |
| 13 |
1 12
|
ax-mp |
|- ( # ` { H } ) = 1 |
| 14 |
11 13
|
eqtrdi |
|- ( x = { H } -> ( # ` x ) = 1 ) |
| 15 |
14
|
oveq1d |
|- ( x = { H } -> ( ( # ` x ) / 2 ) = ( 1 / 2 ) ) |
| 16 |
8
|
pwex |
|- ~P { H , T } e. _V |
| 17 |
16
|
a1i |
|- ( H e. _V -> ~P { H , T } e. _V ) |
| 18 |
|
2nn0 |
|- 2 e. NN0 |
| 19 |
18
|
a1i |
|- ( H e. _V -> 2 e. NN0 ) |
| 20 |
|
prfi |
|- { H , T } e. Fin |
| 21 |
|
elpwi |
|- ( x e. ~P { H , T } -> x C_ { H , T } ) |
| 22 |
|
ssfi |
|- ( ( { H , T } e. Fin /\ x C_ { H , T } ) -> x e. Fin ) |
| 23 |
20 21 22
|
sylancr |
|- ( x e. ~P { H , T } -> x e. Fin ) |
| 24 |
23
|
adantl |
|- ( ( H e. _V /\ x e. ~P { H , T } ) -> x e. Fin ) |
| 25 |
|
hashcl |
|- ( x e. Fin -> ( # ` x ) e. NN0 ) |
| 26 |
24 25
|
syl |
|- ( ( H e. _V /\ x e. ~P { H , T } ) -> ( # ` x ) e. NN0 ) |
| 27 |
|
hashf |
|- # : _V --> ( NN0 u. { +oo } ) |
| 28 |
27
|
a1i |
|- ( H e. _V -> # : _V --> ( NN0 u. { +oo } ) ) |
| 29 |
|
ssv |
|- ~P { H , T } C_ _V |
| 30 |
29
|
a1i |
|- ( H e. _V -> ~P { H , T } C_ _V ) |
| 31 |
28 30
|
feqresmpt |
|- ( H e. _V -> ( # |` ~P { H , T } ) = ( x e. ~P { H , T } |-> ( # ` x ) ) ) |
| 32 |
17 19 26 31
|
ofcfval2 |
|- ( H e. _V -> ( ( # |` ~P { H , T } ) oFC / 2 ) = ( x e. ~P { H , T } |-> ( ( # ` x ) / 2 ) ) ) |
| 33 |
1 32
|
ax-mp |
|- ( ( # |` ~P { H , T } ) oFC / 2 ) = ( x e. ~P { H , T } |-> ( ( # ` x ) / 2 ) ) |
| 34 |
|
ovex |
|- ( 1 / 2 ) e. _V |
| 35 |
15 33 34
|
fvmpt |
|- ( { H } e. ~P { H , T } -> ( ( ( # |` ~P { H , T } ) oFC / 2 ) ` { H } ) = ( 1 / 2 ) ) |
| 36 |
7 10 35
|
mp2b |
|- ( ( ( # |` ~P { H , T } ) oFC / 2 ) ` { H } ) = ( 1 / 2 ) |
| 37 |
6 36
|
eqtri |
|- ( P ` { H } ) = ( 1 / 2 ) |