Metamath Proof Explorer


Theorem coinflippv

Description: The probability of heads is one-half. (Contributed by Thierry Arnoux, 15-Jan-2017)

Ref Expression
Hypotheses coinflip.h HV
coinflip.t TV
coinflip.th HT
coinflip.2 P=.𝒫HTfc÷2
coinflip.3 X=H1T0
Assertion coinflippv PH=12

Proof

Step Hyp Ref Expression
1 coinflip.h HV
2 coinflip.t TV
3 coinflip.th HT
4 coinflip.2 P=.𝒫HTfc÷2
5 coinflip.3 X=H1T0
6 4 fveq1i PH=.𝒫HTfc÷2H
7 snsspr1 HHT
8 prex HTV
9 8 elpw2 H𝒫HTHHT
10 9 biimpri HHTH𝒫HT
11 fveq2 x=Hx=H
12 hashsng HVH=1
13 1 12 ax-mp H=1
14 11 13 eqtrdi x=Hx=1
15 14 oveq1d x=Hx2=12
16 8 pwex 𝒫HTV
17 16 a1i HV𝒫HTV
18 2nn0 20
19 18 a1i HV20
20 prfi HTFin
21 elpwi x𝒫HTxHT
22 ssfi HTFinxHTxFin
23 20 21 22 sylancr x𝒫HTxFin
24 23 adantl HVx𝒫HTxFin
25 hashcl xFinx0
26 24 25 syl HVx𝒫HTx0
27 hashf .:V0+∞
28 27 a1i HV.:V0+∞
29 ssv 𝒫HTV
30 29 a1i HV𝒫HTV
31 28 30 feqresmpt HV.𝒫HT=x𝒫HTx
32 17 19 26 31 ofcfval2 HV.𝒫HTfc÷2=x𝒫HTx2
33 1 32 ax-mp .𝒫HTfc÷2=x𝒫HTx2
34 ovex 12V
35 15 33 34 fvmpt H𝒫HT.𝒫HTfc÷2H=12
36 7 10 35 mp2b .𝒫HTfc÷2H=12
37 6 36 eqtri PH=12