Metamath Proof Explorer


Theorem coinflippv

Description: The probability of heads is one-half. (Contributed by Thierry Arnoux, 15-Jan-2017)

Ref Expression
Hypotheses coinflip.h H V
coinflip.t T V
coinflip.th H T
coinflip.2 P = . 𝒫 H T fc ÷ 2
coinflip.3 X = H 1 T 0
Assertion coinflippv P H = 1 2

Proof

Step Hyp Ref Expression
1 coinflip.h H V
2 coinflip.t T V
3 coinflip.th H T
4 coinflip.2 P = . 𝒫 H T fc ÷ 2
5 coinflip.3 X = H 1 T 0
6 4 fveq1i P H = . 𝒫 H T fc ÷ 2 H
7 snsspr1 H H T
8 prex H T V
9 8 elpw2 H 𝒫 H T H H T
10 9 biimpri H H T H 𝒫 H T
11 fveq2 x = H x = H
12 hashsng H V H = 1
13 1 12 ax-mp H = 1
14 11 13 eqtrdi x = H x = 1
15 14 oveq1d x = H x 2 = 1 2
16 8 pwex 𝒫 H T V
17 16 a1i H V 𝒫 H T V
18 2nn0 2 0
19 18 a1i H V 2 0
20 prfi H T Fin
21 elpwi x 𝒫 H T x H T
22 ssfi H T Fin x H T x Fin
23 20 21 22 sylancr x 𝒫 H T x Fin
24 23 adantl H V x 𝒫 H T x Fin
25 hashcl x Fin x 0
26 24 25 syl H V x 𝒫 H T x 0
27 hashf . : V 0 +∞
28 27 a1i H V . : V 0 +∞
29 ssv 𝒫 H T V
30 29 a1i H V 𝒫 H T V
31 28 30 feqresmpt H V . 𝒫 H T = x 𝒫 H T x
32 17 19 26 31 ofcfval2 H V . 𝒫 H T fc ÷ 2 = x 𝒫 H T x 2
33 1 32 ax-mp . 𝒫 H T fc ÷ 2 = x 𝒫 H T x 2
34 ovex 1 2 V
35 15 33 34 fvmpt H 𝒫 H T . 𝒫 H T fc ÷ 2 H = 1 2
36 7 10 35 mp2b . 𝒫 H T fc ÷ 2 H = 1 2
37 6 36 eqtri P H = 1 2