Metamath Proof Explorer


Theorem coinflippvt

Description: The probability of tails is one-half. (Contributed by Thierry Arnoux, 5-Feb-2017)

Ref Expression
Hypotheses coinflip.h H V
coinflip.t T V
coinflip.th H T
coinflip.2 P = . 𝒫 H T fc ÷ 2
coinflip.3 X = H 1 T 0
Assertion coinflippvt P T = 1 2

Proof

Step Hyp Ref Expression
1 coinflip.h H V
2 coinflip.t T V
3 coinflip.th H T
4 coinflip.2 P = . 𝒫 H T fc ÷ 2
5 coinflip.3 X = H 1 T 0
6 1 2 3 4 5 coinflipprob P Prob
7 1 prid1 H H T
8 snelpwi H H T H 𝒫 H T
9 7 8 ax-mp H 𝒫 H T
10 1 2 3 4 5 coinflipspace dom P = 𝒫 H T
11 9 10 eleqtrri H dom P
12 probdsb P Prob H dom P P dom P H = 1 P H
13 6 11 12 mp2an P dom P H = 1 P H
14 1 2 3 4 5 coinflipuniv dom P = H T
15 14 difeq1i dom P H = H T H
16 difprsn1 H T H T H = T
17 3 16 ax-mp H T H = T
18 15 17 eqtri dom P H = T
19 18 fveq2i P dom P H = P T
20 1 2 3 4 5 coinflippv P H = 1 2
21 20 oveq2i 1 P H = 1 1 2
22 13 19 21 3eqtr3i P T = 1 1 2
23 1mhlfehlf 1 1 2 = 1 2
24 22 23 eqtri P T = 1 2