Metamath Proof Explorer


Theorem coinflippvt

Description: The probability of tails is one-half. (Contributed by Thierry Arnoux, 5-Feb-2017)

Ref Expression
Hypotheses coinflip.h
|- H e. _V
coinflip.t
|- T e. _V
coinflip.th
|- H =/= T
coinflip.2
|- P = ( ( # |` ~P { H , T } ) oFC / 2 )
coinflip.3
|- X = { <. H , 1 >. , <. T , 0 >. }
Assertion coinflippvt
|- ( P ` { T } ) = ( 1 / 2 )

Proof

Step Hyp Ref Expression
1 coinflip.h
 |-  H e. _V
2 coinflip.t
 |-  T e. _V
3 coinflip.th
 |-  H =/= T
4 coinflip.2
 |-  P = ( ( # |` ~P { H , T } ) oFC / 2 )
5 coinflip.3
 |-  X = { <. H , 1 >. , <. T , 0 >. }
6 1 2 3 4 5 coinflipprob
 |-  P e. Prob
7 1 prid1
 |-  H e. { H , T }
8 snelpwi
 |-  ( H e. { H , T } -> { H } e. ~P { H , T } )
9 7 8 ax-mp
 |-  { H } e. ~P { H , T }
10 1 2 3 4 5 coinflipspace
 |-  dom P = ~P { H , T }
11 9 10 eleqtrri
 |-  { H } e. dom P
12 probdsb
 |-  ( ( P e. Prob /\ { H } e. dom P ) -> ( P ` ( U. dom P \ { H } ) ) = ( 1 - ( P ` { H } ) ) )
13 6 11 12 mp2an
 |-  ( P ` ( U. dom P \ { H } ) ) = ( 1 - ( P ` { H } ) )
14 1 2 3 4 5 coinflipuniv
 |-  U. dom P = { H , T }
15 14 difeq1i
 |-  ( U. dom P \ { H } ) = ( { H , T } \ { H } )
16 difprsn1
 |-  ( H =/= T -> ( { H , T } \ { H } ) = { T } )
17 3 16 ax-mp
 |-  ( { H , T } \ { H } ) = { T }
18 15 17 eqtri
 |-  ( U. dom P \ { H } ) = { T }
19 18 fveq2i
 |-  ( P ` ( U. dom P \ { H } ) ) = ( P ` { T } )
20 1 2 3 4 5 coinflippv
 |-  ( P ` { H } ) = ( 1 / 2 )
21 20 oveq2i
 |-  ( 1 - ( P ` { H } ) ) = ( 1 - ( 1 / 2 ) )
22 13 19 21 3eqtr3i
 |-  ( P ` { T } ) = ( 1 - ( 1 / 2 ) )
23 1mhlfehlf
 |-  ( 1 - ( 1 / 2 ) ) = ( 1 / 2 )
24 22 23 eqtri
 |-  ( P ` { T } ) = ( 1 / 2 )