| Step | Hyp | Ref | Expression | 
						
							| 1 |  | coinflip.h |  |-  H e. _V | 
						
							| 2 |  | coinflip.t |  |-  T e. _V | 
						
							| 3 |  | coinflip.th |  |-  H =/= T | 
						
							| 4 |  | coinflip.2 |  |-  P = ( ( # |` ~P { H , T } ) oFC / 2 ) | 
						
							| 5 |  | coinflip.3 |  |-  X = { <. H , 1 >. , <. T , 0 >. } | 
						
							| 6 | 1 2 3 4 5 | coinflipprob |  |-  P e. Prob | 
						
							| 7 | 1 | prid1 |  |-  H e. { H , T } | 
						
							| 8 |  | snelpwi |  |-  ( H e. { H , T } -> { H } e. ~P { H , T } ) | 
						
							| 9 | 7 8 | ax-mp |  |-  { H } e. ~P { H , T } | 
						
							| 10 | 1 2 3 4 5 | coinflipspace |  |-  dom P = ~P { H , T } | 
						
							| 11 | 9 10 | eleqtrri |  |-  { H } e. dom P | 
						
							| 12 |  | probdsb |  |-  ( ( P e. Prob /\ { H } e. dom P ) -> ( P ` ( U. dom P \ { H } ) ) = ( 1 - ( P ` { H } ) ) ) | 
						
							| 13 | 6 11 12 | mp2an |  |-  ( P ` ( U. dom P \ { H } ) ) = ( 1 - ( P ` { H } ) ) | 
						
							| 14 | 1 2 3 4 5 | coinflipuniv |  |-  U. dom P = { H , T } | 
						
							| 15 | 14 | difeq1i |  |-  ( U. dom P \ { H } ) = ( { H , T } \ { H } ) | 
						
							| 16 |  | difprsn1 |  |-  ( H =/= T -> ( { H , T } \ { H } ) = { T } ) | 
						
							| 17 | 3 16 | ax-mp |  |-  ( { H , T } \ { H } ) = { T } | 
						
							| 18 | 15 17 | eqtri |  |-  ( U. dom P \ { H } ) = { T } | 
						
							| 19 | 18 | fveq2i |  |-  ( P ` ( U. dom P \ { H } ) ) = ( P ` { T } ) | 
						
							| 20 | 1 2 3 4 5 | coinflippv |  |-  ( P ` { H } ) = ( 1 / 2 ) | 
						
							| 21 | 20 | oveq2i |  |-  ( 1 - ( P ` { H } ) ) = ( 1 - ( 1 / 2 ) ) | 
						
							| 22 | 13 19 21 | 3eqtr3i |  |-  ( P ` { T } ) = ( 1 - ( 1 / 2 ) ) | 
						
							| 23 |  | 1mhlfehlf |  |-  ( 1 - ( 1 / 2 ) ) = ( 1 / 2 ) | 
						
							| 24 | 22 23 | eqtri |  |-  ( P ` { T } ) = ( 1 / 2 ) |