Step |
Hyp |
Ref |
Expression |
1 |
|
coinflip.h |
|- H e. _V |
2 |
|
coinflip.t |
|- T e. _V |
3 |
|
coinflip.th |
|- H =/= T |
4 |
|
coinflip.2 |
|- P = ( ( # |` ~P { H , T } ) oFC / 2 ) |
5 |
|
coinflip.3 |
|- X = { <. H , 1 >. , <. T , 0 >. } |
6 |
1 2 3 4 5
|
coinflipprob |
|- P e. Prob |
7 |
1
|
prid1 |
|- H e. { H , T } |
8 |
|
snelpwi |
|- ( H e. { H , T } -> { H } e. ~P { H , T } ) |
9 |
7 8
|
ax-mp |
|- { H } e. ~P { H , T } |
10 |
1 2 3 4 5
|
coinflipspace |
|- dom P = ~P { H , T } |
11 |
9 10
|
eleqtrri |
|- { H } e. dom P |
12 |
|
probdsb |
|- ( ( P e. Prob /\ { H } e. dom P ) -> ( P ` ( U. dom P \ { H } ) ) = ( 1 - ( P ` { H } ) ) ) |
13 |
6 11 12
|
mp2an |
|- ( P ` ( U. dom P \ { H } ) ) = ( 1 - ( P ` { H } ) ) |
14 |
1 2 3 4 5
|
coinflipuniv |
|- U. dom P = { H , T } |
15 |
14
|
difeq1i |
|- ( U. dom P \ { H } ) = ( { H , T } \ { H } ) |
16 |
|
difprsn1 |
|- ( H =/= T -> ( { H , T } \ { H } ) = { T } ) |
17 |
3 16
|
ax-mp |
|- ( { H , T } \ { H } ) = { T } |
18 |
15 17
|
eqtri |
|- ( U. dom P \ { H } ) = { T } |
19 |
18
|
fveq2i |
|- ( P ` ( U. dom P \ { H } ) ) = ( P ` { T } ) |
20 |
1 2 3 4 5
|
coinflippv |
|- ( P ` { H } ) = ( 1 / 2 ) |
21 |
20
|
oveq2i |
|- ( 1 - ( P ` { H } ) ) = ( 1 - ( 1 / 2 ) ) |
22 |
13 19 21
|
3eqtr3i |
|- ( P ` { T } ) = ( 1 - ( 1 / 2 ) ) |
23 |
|
1mhlfehlf |
|- ( 1 - ( 1 / 2 ) ) = ( 1 / 2 ) |
24 |
22 23
|
eqtri |
|- ( P ` { T } ) = ( 1 / 2 ) |