Step |
Hyp |
Ref |
Expression |
1 |
|
vn0 |
⊢ V ≠ ∅ |
2 |
|
id |
⊢ ( ( V ∖ 𝐴 ) = 𝐴 → ( V ∖ 𝐴 ) = 𝐴 ) |
3 |
|
difeq1 |
⊢ ( ( V ∖ 𝐴 ) = 𝐴 → ( ( V ∖ 𝐴 ) ∖ 𝐴 ) = ( 𝐴 ∖ 𝐴 ) ) |
4 |
|
difabs |
⊢ ( ( V ∖ 𝐴 ) ∖ 𝐴 ) = ( V ∖ 𝐴 ) |
5 |
|
difid |
⊢ ( 𝐴 ∖ 𝐴 ) = ∅ |
6 |
3 4 5
|
3eqtr3g |
⊢ ( ( V ∖ 𝐴 ) = 𝐴 → ( V ∖ 𝐴 ) = ∅ ) |
7 |
2 6
|
eqtr3d |
⊢ ( ( V ∖ 𝐴 ) = 𝐴 → 𝐴 = ∅ ) |
8 |
7
|
difeq2d |
⊢ ( ( V ∖ 𝐴 ) = 𝐴 → ( V ∖ 𝐴 ) = ( V ∖ ∅ ) ) |
9 |
|
dif0 |
⊢ ( V ∖ ∅ ) = V |
10 |
8 9
|
eqtrdi |
⊢ ( ( V ∖ 𝐴 ) = 𝐴 → ( V ∖ 𝐴 ) = V ) |
11 |
10 6
|
eqtr3d |
⊢ ( ( V ∖ 𝐴 ) = 𝐴 → V = ∅ ) |
12 |
11
|
necon3i |
⊢ ( V ≠ ∅ → ( V ∖ 𝐴 ) ≠ 𝐴 ) |
13 |
1 12
|
ax-mp |
⊢ ( V ∖ 𝐴 ) ≠ 𝐴 |