| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vn0 | ⊢ V  ≠  ∅ | 
						
							| 2 |  | id | ⊢ ( ( V  ∖  𝐴 )  =  𝐴  →  ( V  ∖  𝐴 )  =  𝐴 ) | 
						
							| 3 |  | difeq1 | ⊢ ( ( V  ∖  𝐴 )  =  𝐴  →  ( ( V  ∖  𝐴 )  ∖  𝐴 )  =  ( 𝐴  ∖  𝐴 ) ) | 
						
							| 4 |  | difabs | ⊢ ( ( V  ∖  𝐴 )  ∖  𝐴 )  =  ( V  ∖  𝐴 ) | 
						
							| 5 |  | difid | ⊢ ( 𝐴  ∖  𝐴 )  =  ∅ | 
						
							| 6 | 3 4 5 | 3eqtr3g | ⊢ ( ( V  ∖  𝐴 )  =  𝐴  →  ( V  ∖  𝐴 )  =  ∅ ) | 
						
							| 7 | 2 6 | eqtr3d | ⊢ ( ( V  ∖  𝐴 )  =  𝐴  →  𝐴  =  ∅ ) | 
						
							| 8 | 7 | difeq2d | ⊢ ( ( V  ∖  𝐴 )  =  𝐴  →  ( V  ∖  𝐴 )  =  ( V  ∖  ∅ ) ) | 
						
							| 9 |  | dif0 | ⊢ ( V  ∖  ∅ )  =  V | 
						
							| 10 | 8 9 | eqtrdi | ⊢ ( ( V  ∖  𝐴 )  =  𝐴  →  ( V  ∖  𝐴 )  =  V ) | 
						
							| 11 | 10 6 | eqtr3d | ⊢ ( ( V  ∖  𝐴 )  =  𝐴  →  V  =  ∅ ) | 
						
							| 12 | 11 | necon3i | ⊢ ( V  ≠  ∅  →  ( V  ∖  𝐴 )  ≠  𝐴 ) | 
						
							| 13 | 1 12 | ax-mp | ⊢ ( V  ∖  𝐴 )  ≠  𝐴 |