| Step |
Hyp |
Ref |
Expression |
| 1 |
|
csbeq1 |
⊢ ( 𝑧 = 𝐴 → ⦋ 𝑧 / 𝑥 ⦌ ( ℩ 𝑦 ∈ 𝐵 𝜑 ) = ⦋ 𝐴 / 𝑥 ⦌ ( ℩ 𝑦 ∈ 𝐵 𝜑 ) ) |
| 2 |
|
dfsbcq2 |
⊢ ( 𝑧 = 𝐴 → ( [ 𝑧 / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 3 |
2
|
riotabidv |
⊢ ( 𝑧 = 𝐴 → ( ℩ 𝑦 ∈ 𝐵 [ 𝑧 / 𝑥 ] 𝜑 ) = ( ℩ 𝑦 ∈ 𝐵 [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 4 |
1 3
|
eqeq12d |
⊢ ( 𝑧 = 𝐴 → ( ⦋ 𝑧 / 𝑥 ⦌ ( ℩ 𝑦 ∈ 𝐵 𝜑 ) = ( ℩ 𝑦 ∈ 𝐵 [ 𝑧 / 𝑥 ] 𝜑 ) ↔ ⦋ 𝐴 / 𝑥 ⦌ ( ℩ 𝑦 ∈ 𝐵 𝜑 ) = ( ℩ 𝑦 ∈ 𝐵 [ 𝐴 / 𝑥 ] 𝜑 ) ) ) |
| 5 |
|
vex |
⊢ 𝑧 ∈ V |
| 6 |
|
nfs1v |
⊢ Ⅎ 𝑥 [ 𝑧 / 𝑥 ] 𝜑 |
| 7 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐵 |
| 8 |
6 7
|
nfriota |
⊢ Ⅎ 𝑥 ( ℩ 𝑦 ∈ 𝐵 [ 𝑧 / 𝑥 ] 𝜑 ) |
| 9 |
|
sbequ12 |
⊢ ( 𝑥 = 𝑧 → ( 𝜑 ↔ [ 𝑧 / 𝑥 ] 𝜑 ) ) |
| 10 |
9
|
riotabidv |
⊢ ( 𝑥 = 𝑧 → ( ℩ 𝑦 ∈ 𝐵 𝜑 ) = ( ℩ 𝑦 ∈ 𝐵 [ 𝑧 / 𝑥 ] 𝜑 ) ) |
| 11 |
5 8 10
|
csbief |
⊢ ⦋ 𝑧 / 𝑥 ⦌ ( ℩ 𝑦 ∈ 𝐵 𝜑 ) = ( ℩ 𝑦 ∈ 𝐵 [ 𝑧 / 𝑥 ] 𝜑 ) |
| 12 |
4 11
|
vtoclg |
⊢ ( 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ ( ℩ 𝑦 ∈ 𝐵 𝜑 ) = ( ℩ 𝑦 ∈ 𝐵 [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 13 |
|
csbprc |
⊢ ( ¬ 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ ( ℩ 𝑦 ∈ 𝐵 𝜑 ) = ∅ ) |
| 14 |
|
df-riota |
⊢ ( ℩ 𝑦 ∈ 𝐵 [ 𝐴 / 𝑥 ] 𝜑 ) = ( ℩ 𝑦 ( 𝑦 ∈ 𝐵 ∧ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 15 |
|
euex |
⊢ ( ∃! 𝑦 ( 𝑦 ∈ 𝐵 ∧ [ 𝐴 / 𝑥 ] 𝜑 ) → ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 16 |
|
sbcex |
⊢ ( [ 𝐴 / 𝑥 ] 𝜑 → 𝐴 ∈ V ) |
| 17 |
16
|
adantl |
⊢ ( ( 𝑦 ∈ 𝐵 ∧ [ 𝐴 / 𝑥 ] 𝜑 ) → 𝐴 ∈ V ) |
| 18 |
17
|
exlimiv |
⊢ ( ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ [ 𝐴 / 𝑥 ] 𝜑 ) → 𝐴 ∈ V ) |
| 19 |
15 18
|
syl |
⊢ ( ∃! 𝑦 ( 𝑦 ∈ 𝐵 ∧ [ 𝐴 / 𝑥 ] 𝜑 ) → 𝐴 ∈ V ) |
| 20 |
|
iotanul |
⊢ ( ¬ ∃! 𝑦 ( 𝑦 ∈ 𝐵 ∧ [ 𝐴 / 𝑥 ] 𝜑 ) → ( ℩ 𝑦 ( 𝑦 ∈ 𝐵 ∧ [ 𝐴 / 𝑥 ] 𝜑 ) ) = ∅ ) |
| 21 |
19 20
|
nsyl5 |
⊢ ( ¬ 𝐴 ∈ V → ( ℩ 𝑦 ( 𝑦 ∈ 𝐵 ∧ [ 𝐴 / 𝑥 ] 𝜑 ) ) = ∅ ) |
| 22 |
14 21
|
eqtr2id |
⊢ ( ¬ 𝐴 ∈ V → ∅ = ( ℩ 𝑦 ∈ 𝐵 [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 23 |
13 22
|
eqtrd |
⊢ ( ¬ 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ ( ℩ 𝑦 ∈ 𝐵 𝜑 ) = ( ℩ 𝑦 ∈ 𝐵 [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 24 |
12 23
|
pm2.61i |
⊢ ⦋ 𝐴 / 𝑥 ⦌ ( ℩ 𝑦 ∈ 𝐵 𝜑 ) = ( ℩ 𝑦 ∈ 𝐵 [ 𝐴 / 𝑥 ] 𝜑 ) |