Metamath Proof Explorer


Theorem cvrfval

Description: Value of covers relation "is covered by". (Contributed by NM, 18-Sep-2011)

Ref Expression
Hypotheses cvrfval.b 𝐵 = ( Base ‘ 𝐾 )
cvrfval.s < = ( lt ‘ 𝐾 )
cvrfval.c 𝐶 = ( ⋖ ‘ 𝐾 )
Assertion cvrfval ( 𝐾𝐴𝐶 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐵𝑦𝐵 ) ∧ 𝑥 < 𝑦 ∧ ¬ ∃ 𝑧𝐵 ( 𝑥 < 𝑧𝑧 < 𝑦 ) ) } )

Proof

Step Hyp Ref Expression
1 cvrfval.b 𝐵 = ( Base ‘ 𝐾 )
2 cvrfval.s < = ( lt ‘ 𝐾 )
3 cvrfval.c 𝐶 = ( ⋖ ‘ 𝐾 )
4 elex ( 𝐾𝐴𝐾 ∈ V )
5 fveq2 ( 𝑝 = 𝐾 → ( Base ‘ 𝑝 ) = ( Base ‘ 𝐾 ) )
6 5 1 eqtr4di ( 𝑝 = 𝐾 → ( Base ‘ 𝑝 ) = 𝐵 )
7 6 eleq2d ( 𝑝 = 𝐾 → ( 𝑥 ∈ ( Base ‘ 𝑝 ) ↔ 𝑥𝐵 ) )
8 6 eleq2d ( 𝑝 = 𝐾 → ( 𝑦 ∈ ( Base ‘ 𝑝 ) ↔ 𝑦𝐵 ) )
9 7 8 anbi12d ( 𝑝 = 𝐾 → ( ( 𝑥 ∈ ( Base ‘ 𝑝 ) ∧ 𝑦 ∈ ( Base ‘ 𝑝 ) ) ↔ ( 𝑥𝐵𝑦𝐵 ) ) )
10 fveq2 ( 𝑝 = 𝐾 → ( lt ‘ 𝑝 ) = ( lt ‘ 𝐾 ) )
11 10 2 eqtr4di ( 𝑝 = 𝐾 → ( lt ‘ 𝑝 ) = < )
12 11 breqd ( 𝑝 = 𝐾 → ( 𝑥 ( lt ‘ 𝑝 ) 𝑦𝑥 < 𝑦 ) )
13 11 breqd ( 𝑝 = 𝐾 → ( 𝑥 ( lt ‘ 𝑝 ) 𝑧𝑥 < 𝑧 ) )
14 11 breqd ( 𝑝 = 𝐾 → ( 𝑧 ( lt ‘ 𝑝 ) 𝑦𝑧 < 𝑦 ) )
15 13 14 anbi12d ( 𝑝 = 𝐾 → ( ( 𝑥 ( lt ‘ 𝑝 ) 𝑧𝑧 ( lt ‘ 𝑝 ) 𝑦 ) ↔ ( 𝑥 < 𝑧𝑧 < 𝑦 ) ) )
16 6 15 rexeqbidv ( 𝑝 = 𝐾 → ( ∃ 𝑧 ∈ ( Base ‘ 𝑝 ) ( 𝑥 ( lt ‘ 𝑝 ) 𝑧𝑧 ( lt ‘ 𝑝 ) 𝑦 ) ↔ ∃ 𝑧𝐵 ( 𝑥 < 𝑧𝑧 < 𝑦 ) ) )
17 16 notbid ( 𝑝 = 𝐾 → ( ¬ ∃ 𝑧 ∈ ( Base ‘ 𝑝 ) ( 𝑥 ( lt ‘ 𝑝 ) 𝑧𝑧 ( lt ‘ 𝑝 ) 𝑦 ) ↔ ¬ ∃ 𝑧𝐵 ( 𝑥 < 𝑧𝑧 < 𝑦 ) ) )
18 9 12 17 3anbi123d ( 𝑝 = 𝐾 → ( ( ( 𝑥 ∈ ( Base ‘ 𝑝 ) ∧ 𝑦 ∈ ( Base ‘ 𝑝 ) ) ∧ 𝑥 ( lt ‘ 𝑝 ) 𝑦 ∧ ¬ ∃ 𝑧 ∈ ( Base ‘ 𝑝 ) ( 𝑥 ( lt ‘ 𝑝 ) 𝑧𝑧 ( lt ‘ 𝑝 ) 𝑦 ) ) ↔ ( ( 𝑥𝐵𝑦𝐵 ) ∧ 𝑥 < 𝑦 ∧ ¬ ∃ 𝑧𝐵 ( 𝑥 < 𝑧𝑧 < 𝑦 ) ) ) )
19 18 opabbidv ( 𝑝 = 𝐾 → { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥 ∈ ( Base ‘ 𝑝 ) ∧ 𝑦 ∈ ( Base ‘ 𝑝 ) ) ∧ 𝑥 ( lt ‘ 𝑝 ) 𝑦 ∧ ¬ ∃ 𝑧 ∈ ( Base ‘ 𝑝 ) ( 𝑥 ( lt ‘ 𝑝 ) 𝑧𝑧 ( lt ‘ 𝑝 ) 𝑦 ) ) } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐵𝑦𝐵 ) ∧ 𝑥 < 𝑦 ∧ ¬ ∃ 𝑧𝐵 ( 𝑥 < 𝑧𝑧 < 𝑦 ) ) } )
20 df-covers ⋖ = ( 𝑝 ∈ V ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥 ∈ ( Base ‘ 𝑝 ) ∧ 𝑦 ∈ ( Base ‘ 𝑝 ) ) ∧ 𝑥 ( lt ‘ 𝑝 ) 𝑦 ∧ ¬ ∃ 𝑧 ∈ ( Base ‘ 𝑝 ) ( 𝑥 ( lt ‘ 𝑝 ) 𝑧𝑧 ( lt ‘ 𝑝 ) 𝑦 ) ) } )
21 3anass ( ( ( 𝑥𝐵𝑦𝐵 ) ∧ 𝑥 < 𝑦 ∧ ¬ ∃ 𝑧𝐵 ( 𝑥 < 𝑧𝑧 < 𝑦 ) ) ↔ ( ( 𝑥𝐵𝑦𝐵 ) ∧ ( 𝑥 < 𝑦 ∧ ¬ ∃ 𝑧𝐵 ( 𝑥 < 𝑧𝑧 < 𝑦 ) ) ) )
22 21 opabbii { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐵𝑦𝐵 ) ∧ 𝑥 < 𝑦 ∧ ¬ ∃ 𝑧𝐵 ( 𝑥 < 𝑧𝑧 < 𝑦 ) ) } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐵𝑦𝐵 ) ∧ ( 𝑥 < 𝑦 ∧ ¬ ∃ 𝑧𝐵 ( 𝑥 < 𝑧𝑧 < 𝑦 ) ) ) }
23 1 fvexi 𝐵 ∈ V
24 23 23 xpex ( 𝐵 × 𝐵 ) ∈ V
25 opabssxp { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐵𝑦𝐵 ) ∧ ( 𝑥 < 𝑦 ∧ ¬ ∃ 𝑧𝐵 ( 𝑥 < 𝑧𝑧 < 𝑦 ) ) ) } ⊆ ( 𝐵 × 𝐵 )
26 24 25 ssexi { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐵𝑦𝐵 ) ∧ ( 𝑥 < 𝑦 ∧ ¬ ∃ 𝑧𝐵 ( 𝑥 < 𝑧𝑧 < 𝑦 ) ) ) } ∈ V
27 22 26 eqeltri { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐵𝑦𝐵 ) ∧ 𝑥 < 𝑦 ∧ ¬ ∃ 𝑧𝐵 ( 𝑥 < 𝑧𝑧 < 𝑦 ) ) } ∈ V
28 19 20 27 fvmpt ( 𝐾 ∈ V → ( ⋖ ‘ 𝐾 ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐵𝑦𝐵 ) ∧ 𝑥 < 𝑦 ∧ ¬ ∃ 𝑧𝐵 ( 𝑥 < 𝑧𝑧 < 𝑦 ) ) } )
29 3 28 eqtrid ( 𝐾 ∈ V → 𝐶 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐵𝑦𝐵 ) ∧ 𝑥 < 𝑦 ∧ ¬ ∃ 𝑧𝐵 ( 𝑥 < 𝑧𝑧 < 𝑦 ) ) } )
30 4 29 syl ( 𝐾𝐴𝐶 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐵𝑦𝐵 ) ∧ 𝑥 < 𝑦 ∧ ¬ ∃ 𝑧𝐵 ( 𝑥 < 𝑧𝑧 < 𝑦 ) ) } )