Step |
Hyp |
Ref |
Expression |
1 |
|
cvrfval.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
cvrfval.s |
⊢ < = ( lt ‘ 𝐾 ) |
3 |
|
cvrfval.c |
⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) |
4 |
|
elex |
⊢ ( 𝐾 ∈ 𝐴 → 𝐾 ∈ V ) |
5 |
|
fveq2 |
⊢ ( 𝑝 = 𝐾 → ( Base ‘ 𝑝 ) = ( Base ‘ 𝐾 ) ) |
6 |
5 1
|
eqtr4di |
⊢ ( 𝑝 = 𝐾 → ( Base ‘ 𝑝 ) = 𝐵 ) |
7 |
6
|
eleq2d |
⊢ ( 𝑝 = 𝐾 → ( 𝑥 ∈ ( Base ‘ 𝑝 ) ↔ 𝑥 ∈ 𝐵 ) ) |
8 |
6
|
eleq2d |
⊢ ( 𝑝 = 𝐾 → ( 𝑦 ∈ ( Base ‘ 𝑝 ) ↔ 𝑦 ∈ 𝐵 ) ) |
9 |
7 8
|
anbi12d |
⊢ ( 𝑝 = 𝐾 → ( ( 𝑥 ∈ ( Base ‘ 𝑝 ) ∧ 𝑦 ∈ ( Base ‘ 𝑝 ) ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ) |
10 |
|
fveq2 |
⊢ ( 𝑝 = 𝐾 → ( lt ‘ 𝑝 ) = ( lt ‘ 𝐾 ) ) |
11 |
10 2
|
eqtr4di |
⊢ ( 𝑝 = 𝐾 → ( lt ‘ 𝑝 ) = < ) |
12 |
11
|
breqd |
⊢ ( 𝑝 = 𝐾 → ( 𝑥 ( lt ‘ 𝑝 ) 𝑦 ↔ 𝑥 < 𝑦 ) ) |
13 |
11
|
breqd |
⊢ ( 𝑝 = 𝐾 → ( 𝑥 ( lt ‘ 𝑝 ) 𝑧 ↔ 𝑥 < 𝑧 ) ) |
14 |
11
|
breqd |
⊢ ( 𝑝 = 𝐾 → ( 𝑧 ( lt ‘ 𝑝 ) 𝑦 ↔ 𝑧 < 𝑦 ) ) |
15 |
13 14
|
anbi12d |
⊢ ( 𝑝 = 𝐾 → ( ( 𝑥 ( lt ‘ 𝑝 ) 𝑧 ∧ 𝑧 ( lt ‘ 𝑝 ) 𝑦 ) ↔ ( 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ) ) ) |
16 |
6 15
|
rexeqbidv |
⊢ ( 𝑝 = 𝐾 → ( ∃ 𝑧 ∈ ( Base ‘ 𝑝 ) ( 𝑥 ( lt ‘ 𝑝 ) 𝑧 ∧ 𝑧 ( lt ‘ 𝑝 ) 𝑦 ) ↔ ∃ 𝑧 ∈ 𝐵 ( 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ) ) ) |
17 |
16
|
notbid |
⊢ ( 𝑝 = 𝐾 → ( ¬ ∃ 𝑧 ∈ ( Base ‘ 𝑝 ) ( 𝑥 ( lt ‘ 𝑝 ) 𝑧 ∧ 𝑧 ( lt ‘ 𝑝 ) 𝑦 ) ↔ ¬ ∃ 𝑧 ∈ 𝐵 ( 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ) ) ) |
18 |
9 12 17
|
3anbi123d |
⊢ ( 𝑝 = 𝐾 → ( ( ( 𝑥 ∈ ( Base ‘ 𝑝 ) ∧ 𝑦 ∈ ( Base ‘ 𝑝 ) ) ∧ 𝑥 ( lt ‘ 𝑝 ) 𝑦 ∧ ¬ ∃ 𝑧 ∈ ( Base ‘ 𝑝 ) ( 𝑥 ( lt ‘ 𝑝 ) 𝑧 ∧ 𝑧 ( lt ‘ 𝑝 ) 𝑦 ) ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 < 𝑦 ∧ ¬ ∃ 𝑧 ∈ 𝐵 ( 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ) ) ) ) |
19 |
18
|
opabbidv |
⊢ ( 𝑝 = 𝐾 → { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ( Base ‘ 𝑝 ) ∧ 𝑦 ∈ ( Base ‘ 𝑝 ) ) ∧ 𝑥 ( lt ‘ 𝑝 ) 𝑦 ∧ ¬ ∃ 𝑧 ∈ ( Base ‘ 𝑝 ) ( 𝑥 ( lt ‘ 𝑝 ) 𝑧 ∧ 𝑧 ( lt ‘ 𝑝 ) 𝑦 ) ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 < 𝑦 ∧ ¬ ∃ 𝑧 ∈ 𝐵 ( 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ) ) } ) |
20 |
|
df-covers |
⊢ ⋖ = ( 𝑝 ∈ V ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ( Base ‘ 𝑝 ) ∧ 𝑦 ∈ ( Base ‘ 𝑝 ) ) ∧ 𝑥 ( lt ‘ 𝑝 ) 𝑦 ∧ ¬ ∃ 𝑧 ∈ ( Base ‘ 𝑝 ) ( 𝑥 ( lt ‘ 𝑝 ) 𝑧 ∧ 𝑧 ( lt ‘ 𝑝 ) 𝑦 ) ) } ) |
21 |
|
3anass |
⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 < 𝑦 ∧ ¬ ∃ 𝑧 ∈ 𝐵 ( 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ) ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑥 < 𝑦 ∧ ¬ ∃ 𝑧 ∈ 𝐵 ( 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ) ) ) ) |
22 |
21
|
opabbii |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 < 𝑦 ∧ ¬ ∃ 𝑧 ∈ 𝐵 ( 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ) ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑥 < 𝑦 ∧ ¬ ∃ 𝑧 ∈ 𝐵 ( 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ) ) ) } |
23 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
24 |
23 23
|
xpex |
⊢ ( 𝐵 × 𝐵 ) ∈ V |
25 |
|
opabssxp |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑥 < 𝑦 ∧ ¬ ∃ 𝑧 ∈ 𝐵 ( 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ) ) ) } ⊆ ( 𝐵 × 𝐵 ) |
26 |
24 25
|
ssexi |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑥 < 𝑦 ∧ ¬ ∃ 𝑧 ∈ 𝐵 ( 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ) ) ) } ∈ V |
27 |
22 26
|
eqeltri |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 < 𝑦 ∧ ¬ ∃ 𝑧 ∈ 𝐵 ( 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ) ) } ∈ V |
28 |
19 20 27
|
fvmpt |
⊢ ( 𝐾 ∈ V → ( ⋖ ‘ 𝐾 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 < 𝑦 ∧ ¬ ∃ 𝑧 ∈ 𝐵 ( 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ) ) } ) |
29 |
3 28
|
eqtrid |
⊢ ( 𝐾 ∈ V → 𝐶 = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 < 𝑦 ∧ ¬ ∃ 𝑧 ∈ 𝐵 ( 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ) ) } ) |
30 |
4 29
|
syl |
⊢ ( 𝐾 ∈ 𝐴 → 𝐶 = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 < 𝑦 ∧ ¬ ∃ 𝑧 ∈ 𝐵 ( 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ) ) } ) |